Property (A) of n -th order ODE’s

Jozef Džurina

Mathematica Bohemica (1997)

  • Volume: 122, Issue: 4, page 349-356
  • ISSN: 0862-7959

Abstract

top
The aim of this paper is to deduce oscillatory and asymptotic behavior of the solutions of the ordinary differential equation L_nu(t)+p(t)u(t)=0.

How to cite

top

Džurina, Jozef. "Property (A) of $n$-th order ODE’s." Mathematica Bohemica 122.4 (1997): 349-356. <http://eudml.org/doc/248135>.

@article{Džurina1997,
abstract = {The aim of this paper is to deduce oscillatory and asymptotic behavior of the solutions of the ordinary differential equation L\_nu(t)+p(t)u(t)=0.},
author = {Džurina, Jozef},
journal = {Mathematica Bohemica},
keywords = {property (A) of ODE's; oscillatory behavior; solutions; ordinary differential equations; quasiderivatives; binomial equation; delay-differential equation; differential inequalities; nonoscillatory solutions; property (A) of ODEs; oscillatory behavior; solutions; ordinary differential equations; quasiderivatives; binomial equation; delay-differential equation; differential inequalities; nonoscillatory solutions},
language = {eng},
number = {4},
pages = {349-356},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Property (A) of $n$-th order ODE’s},
url = {http://eudml.org/doc/248135},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Džurina, Jozef
TI - Property (A) of $n$-th order ODE’s
JO - Mathematica Bohemica
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 122
IS - 4
SP - 349
EP - 356
AB - The aim of this paper is to deduce oscillatory and asymptotic behavior of the solutions of the ordinary differential equation L_nu(t)+p(t)u(t)=0.
LA - eng
KW - property (A) of ODE's; oscillatory behavior; solutions; ordinary differential equations; quasiderivatives; binomial equation; delay-differential equation; differential inequalities; nonoscillatory solutions; property (A) of ODEs; oscillatory behavior; solutions; ordinary differential equations; quasiderivatives; binomial equation; delay-differential equation; differential inequalities; nonoscillatory solutions
UR - http://eudml.org/doc/248135
ER -

References

top
  1. T. A. Chanturia, I. T. Kiguradze, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Nauka, Moscow, 1990. (In Russian.) (1990) 
  2. J. Džurina, 10.1002/mana.19931640103, Math. Nachrichten 164 (1993), 13-22. (1993) MR1251452DOI10.1002/mana.19931640103
  3. K. E. Foster, R. C. Grimmer, 10.1016/0022-247X(79)90214-2, J. Math. Anal. Appl. 71 (1979), 1-17. (1979) Zbl0428.34029MR0545858DOI10.1016/0022-247X(79)90214-2
  4. P. Hartman, A. Wintner, 10.2307/2372548, Amer. J. Math. 75 (1953), 731-743. (1953) Zbl0051.07105MR0057404DOI10.2307/2372548
  5. T. Kusano, M. Naito, 10.2969/jmsj/03330509, J. Math. Soc. Japan 3 (1981), 509-532. (1981) Zbl0494.34049MR0620288DOI10.2969/jmsj/03330509
  6. T. Kusano M. Naito, K. Tanaka, Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations, Proc. Roy. Soc. Edinburg. 90 (1981), 25-40. (1981) MR0636062
  7. T. Kusano, M. Naito, 10.2140/pjm.1981.92.345, Pacific J. Math. 92 (1981), 345-355. (1981) MR0618070DOI10.2140/pjm.1981.92.345
  8. D. Knežo, V. Šoltés, Existence and properties of nonoscillation solutions of third order differential equations, Fasciculi Math. 25 (1995), 63-74. (1995) MR1339626
  9. Š. Kulcsár, Boundedness convergence and global stability of solution of a nonlinear differential equations of the second order, Publ. Math. 37 (1990), 193-201. (1990) MR1082298
  10. G. S. Ladde V. Lakshmikantham B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Dekker, New York, 1987. (1987) MR1017244
  11. D. L. Lovelady, 10.2140/pjm.1975.57.475, Pacific J. Math. 57 (1975), 475-480. (1975) Zbl0305.34054MR0379985DOI10.2140/pjm.1975.57.475
  12. D. L. Lovelady, 10.32917/hmj/1206136533, Hiroshima Math. J. 5 (1975), 371-383. (1975) MR0387722DOI10.32917/hmj/1206136533
  13. W. E. Mahfoud, 10.2140/pjm.1979.83.187, Pacific J. Math. 83 (1979), 187-197. (1979) Zbl0441.34053MR0555047DOI10.2140/pjm.1979.83.187
  14. W. E. Mahfoud, 10.1016/0022-0396(78)90138-9, J. Differential Equations 28 (1978), 437-451. (1978) MR0499605DOI10.1016/0022-0396(78)90138-9
  15. M. Naito, 10.32917/hmj/1206133990, Hiroshima Math. J. vol 11 (1981), 553-560. (1981) Zbl0512.34056MR0635038DOI10.32917/hmj/1206133990
  16. Ch. G. Philos, Y. G. Sficas, Oscillatory and asymptotic behavior of second and third order retarded differential equations, Czechoslovak Math. J. 32 (1982), 169-182. (1982) Zbl0507.34062MR0654054
  17. M. Růžičková, E. Špániková, Oscillation theorems for neutral differential equations with the quasi-derivatives, Arch. Math. 30 (1994), 293-300. (1994) MR1322574
  18. W. F. Trench, 10.1090/S0002-9939-1975-0379987-7, Proc. Amer. Math. Soc. 52 (1975), 147-155. (1975) Zbl0321.34027MR0379987DOI10.1090/S0002-9939-1975-0379987-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.