Upper and lower solutions for singularly perturbed semilinear Neumann's problem
Mathematica Bohemica (1997)
- Volume: 122, Issue: 2, page 175-180
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topVrábeľ, Róbert. "Upper and lower solutions for singularly perturbed semilinear Neumann's problem." Mathematica Bohemica 122.2 (1997): 175-180. <http://eudml.org/doc/248137>.
@article{Vrábeľ1997,
abstract = {The paper establishes sufficient conditions for the existence of solutions of Neumann’s problem for the differential equation $\mu y"+ky=f(t,y)$ which tend to the solution of the reduced problem $ky=f(t,y)$ on $[0,1]$ as $\mu \rightarrow 0.$},
author = {Vrábeľ, Róbert},
journal = {Mathematica Bohemica},
keywords = {singularly perturbed equation; Neumann’s problem; singularly perturbed equation; Neumann's problem},
language = {eng},
number = {2},
pages = {175-180},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Upper and lower solutions for singularly perturbed semilinear Neumann's problem},
url = {http://eudml.org/doc/248137},
volume = {122},
year = {1997},
}
TY - JOUR
AU - Vrábeľ, Róbert
TI - Upper and lower solutions for singularly perturbed semilinear Neumann's problem
JO - Mathematica Bohemica
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 122
IS - 2
SP - 175
EP - 180
AB - The paper establishes sufficient conditions for the existence of solutions of Neumann’s problem for the differential equation $\mu y"+ky=f(t,y)$ which tend to the solution of the reduced problem $ky=f(t,y)$ on $[0,1]$ as $\mu \rightarrow 0.$
LA - eng
KW - singularly perturbed equation; Neumann’s problem; singularly perturbed equation; Neumann's problem
UR - http://eudml.org/doc/248137
ER -
References
top- R. E. O'Malley, Jr., 10.1016/0022-247X(76)90214-6, J. Math. Anal. Appl. 54, (1976), 449-466. (1976) Zbl0334.34050MR0450722DOI10.1016/0022-247X(76)90214-6
- J. Mawhin, Points fixes, points critiques ct problemes aux limites, Sémin. Math. Sup. no. 92, Presses Univ. Montгéal, Montréal, 1985. (1985) MR0789982
- K. W. Chang F. A. Howes, Nonlinear singular perturbation phenomena, Springer-Verlag, 1984. (1984) MR0764395
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.