Pairwise fuzzy connectedness between fuzzy sets

Samajh, Singh Thakur; Annamma Philip

Mathematica Bohemica (1997)

  • Volume: 122, Issue: 4, page 375-380
  • ISSN: 0862-7959

Abstract

top
In this paper the concept of fuzzy connectedness between fuzzy sets is generalized to fuzzy bitopological spaces and some of its properties are studied.

How to cite

top

Thakur, Samajh, Singh, and Philip, Annamma. "Pairwise fuzzy connectedness between fuzzy sets." Mathematica Bohemica 122.4 (1997): 375-380. <http://eudml.org/doc/248144>.

@article{Thakur1997,
abstract = {In this paper the concept of fuzzy connectedness between fuzzy sets is generalized to fuzzy bitopological spaces and some of its properties are studied.},
author = {Thakur, Samajh, Singh, Philip, Annamma},
journal = {Mathematica Bohemica},
keywords = {fuzzy bitopological spaces; pairwise fuzzy connectedness; $(i,j)$-fuzzy clopen; fuzzy bitopological spaces; pairwise fuzzy connectedness; -fuzzy clopen},
language = {eng},
number = {4},
pages = {375-380},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pairwise fuzzy connectedness between fuzzy sets},
url = {http://eudml.org/doc/248144},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Thakur, Samajh, Singh
AU - Philip, Annamma
TI - Pairwise fuzzy connectedness between fuzzy sets
JO - Mathematica Bohemica
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 122
IS - 4
SP - 375
EP - 380
AB - In this paper the concept of fuzzy connectedness between fuzzy sets is generalized to fuzzy bitopological spaces and some of its properties are studied.
LA - eng
KW - fuzzy bitopological spaces; pairwise fuzzy connectedness; $(i,j)$-fuzzy clopen; fuzzy bitopological spaces; pairwise fuzzy connectedness; -fuzzy clopen
UR - http://eudml.org/doc/248144
ER -

References

top
  1. G. Balasubramanian, Fuzzy disconnectedness and its stronger forms, Indian J. Pure Appl. Math. 24 (1993), no. 1, 27-30. (1993) Zbl0785.54005MR1203246
  2. C. L. Chang, 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182-190. (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
  3. U. V. Fetteh D. S. Bassan, Fuzzy connectedness and its stronger forms, J. Math. Anal. Appl. III (1985), 449-464. (1985) MR0813222
  4. M. H. Ghanim E. E. Kerre A. S. Mashhour, 10.1016/0022-247X(84)90212-9, J. Math. Anal. Appl. 102 (1984), 189-202. (1984) MR0751352DOI10.1016/0022-247X(84)90212-9
  5. A. Kandil, Biproximities and fuzzy topological spaces, Simon Stevin 63 (1989), 45-46. (1989) MR1021455
  6. S. N. Maheshwari S. S. Thakur, Rita Malviya, Conectedness between fuzzy sets, J. Fuzzy Math. 1 (1993), no. 4, 757-759. (1993) MR1249187
  7. M. N. Mukherjee, Pairwise set connected mappings in bitopological spaces, Indian J. Pure Appl. Math 16 (1989), no. 9, 1106-1113. (1989) MR0864150
  8. P. M. Pu Y. M. Liu, 10.1016/0022-247X(80)90048-7, J. Math. Anal. Appl. 76 (1980), 571-599. (1980) MR0587361DOI10.1016/0022-247X(80)90048-7
  9. S. S. Thakur, Annamma Philip, Connectedness in fuzzy bitopological spaces, Epsilon J. Math. (Submitted). 
  10. L. A. Zadeh, 10.1016/S0019-9958(65)90241-X, Inform. and Control (Shenyang) 8 (1965), 338-353. (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.