Spectral properties of fourth order differential operators

Ondřej Došlý; Roman Hilscher

Mathematica Bohemica (1997)

  • Volume: 122, Issue: 2, page 153-168
  • ISSN: 0862-7959

Abstract

top
Necessary and sufficient conditions for discreteness and boundedness below of the spectrum of the singular differential operator ( y ) 1 w ( t ) ( r ( t ) y ) , t [ a , ) are established. These conditions are based on a recently proved relationship between spectral properties of and oscillation of a certain associated second order differential equation.

How to cite

top

Došlý, Ondřej, and Hilscher, Roman. "Spectral properties of fourth order differential operators." Mathematica Bohemica 122.2 (1997): 153-168. <http://eudml.org/doc/248150>.

@article{Došlý1997,
abstract = {Necessary and sufficient conditions for discreteness and boundedness below of the spectrum of the singular differential operator $\ell (y)\equiv \{1\over w(t)\}\{(r(t)\{y\})\}$, $t\in [a,\infty )$ are established. These conditions are based on a recently proved relationship between spectral properties of $\ell $ and oscillation of a certain associated second order differential equation.},
author = {Došlý, Ondřej, Hilscher, Roman},
journal = {Mathematica Bohemica},
keywords = {singular differential operators; property BD; oscillation criteria; principal solution; singular differential operators; property BD; oscillation criteria; principal solution},
language = {eng},
number = {2},
pages = {153-168},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Spectral properties of fourth order differential operators},
url = {http://eudml.org/doc/248150},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Došlý, Ondřej
AU - Hilscher, Roman
TI - Spectral properties of fourth order differential operators
JO - Mathematica Bohemica
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 122
IS - 2
SP - 153
EP - 168
AB - Necessary and sufficient conditions for discreteness and boundedness below of the spectrum of the singular differential operator $\ell (y)\equiv {1\over w(t)}{(r(t){y})}$, $t\in [a,\infty )$ are established. These conditions are based on a recently proved relationship between spectral properties of $\ell $ and oscillation of a certain associated second order differential equation.
LA - eng
KW - singular differential operators; property BD; oscillation criteria; principal solution; singular differential operators; property BD; oscillation criteria; principal solution
UR - http://eudml.org/doc/248150
ER -

References

top
  1. C. D. Ahlbrandt D. B. Hinton. R. T. Lewis, 10.4153/CJM-1981-019-1, Canad. J. Math. 33 (1981), 229-246. (1981) MR0608867DOI10.4153/CJM-1981-019-1
  2. C. D. Ahlbrandt D. B. Hinton. R. T. Lewis, 10.1016/0022-247X(81)90060-3, J. Math. Anal. Appl. 81 (1981), 234-277. (1981) MR0618771DOI10.1016/0022-247X(81)90060-3
  3. W. A. Coppel, Disconjugacy, Lectures Notes in Math., No. 220, Springer-Verlag, Berlin, 1971. (1971) Zbl0224.34003MR0460785
  4. O. Došlý, Spectral properties of a class of singular differential operators, To appear in Math. Nachr. MR1484668
  5. O. Došlý J. Komenda, Conjugacy criteria and principal solutions of self-adjoint differential equations, Arch. Math. (Brno) 31 (1995), 217-238. (1995) MR1368260
  6. F. Fiedler, 10.1002/mana.19871310119, Math. Nachr. 131 (1987), 205-218. (1987) Zbl0644.34024MR0908812DOI10.1002/mana.19871310119
  7. F. Fiedler, 10.1002/mana.19891420116, Math. Nachr. 142 (1989), 235-250. (1989) Zbl0685.34033MR1017382DOI10.1002/mana.19891420116
  8. I. M. Glazman, Direct Methods of Qualitative Analysis of Singular Differential Operators, Jerusalem, 1965. (1965) 
  9. P. Hartman, 10.1215/S0012-7094-57-02405-5, Duke J. Math. 24 (1956), 25-35. (1956) MR0082591DOI10.1215/S0012-7094-57-02405-5
  10. D. B. Hinton R. T. Lewis, Discrete spectra criteria for singular differential operators with middle terms, Math. Proc. Cambridge Philos. Soc. 77 (1975), 337-347. (1975) MR0367358
  11. R. T. Lewis, 10.1090/S0002-9939-1974-0330608-8, Proc. Amer. Mat. Soc. 42 (1974), 480-482. (1974) MR0330608DOI10.1090/S0002-9939-1974-0330608-8
  12. M. A. Naimark, Linear Differential Operators, Part II. Ungar, New York, 1968. (1968) Zbl0227.34020
  13. W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, New York, 1980. (1980) Zbl0459.34001MR0606199
  14. R. L. Sternberg, Variational methods and nonoscillatory theorems for systems of differential equations, Duke J. Math. 19 (1952), 311-322. (1952) MR0048668
  15. C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Acad. Press, New York, 1968. (1968) Zbl0191.09904MR0463570
  16. J. Weidmann, Linear Operators in Hilbert Spaces, Springer-Verlag, New York, 1980. (1980) Zbl0434.47001MR0566954

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.