Spectral properties of fourth order differential operators
Mathematica Bohemica (1997)
- Volume: 122, Issue: 2, page 153-168
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDošlý, Ondřej, and Hilscher, Roman. "Spectral properties of fourth order differential operators." Mathematica Bohemica 122.2 (1997): 153-168. <http://eudml.org/doc/248150>.
@article{Došlý1997,
abstract = {Necessary and sufficient conditions for discreteness and boundedness below of the spectrum of the singular differential operator $\ell (y)\equiv \{1\over w(t)\}\{(r(t)\{y\})\}$, $t\in [a,\infty )$ are established. These conditions are based on a recently proved relationship between spectral properties of $\ell $ and oscillation of a certain associated second order differential equation.},
author = {Došlý, Ondřej, Hilscher, Roman},
journal = {Mathematica Bohemica},
keywords = {singular differential operators; property BD; oscillation criteria; principal solution; singular differential operators; property BD; oscillation criteria; principal solution},
language = {eng},
number = {2},
pages = {153-168},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Spectral properties of fourth order differential operators},
url = {http://eudml.org/doc/248150},
volume = {122},
year = {1997},
}
TY - JOUR
AU - Došlý, Ondřej
AU - Hilscher, Roman
TI - Spectral properties of fourth order differential operators
JO - Mathematica Bohemica
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 122
IS - 2
SP - 153
EP - 168
AB - Necessary and sufficient conditions for discreteness and boundedness below of the spectrum of the singular differential operator $\ell (y)\equiv {1\over w(t)}{(r(t){y})}$, $t\in [a,\infty )$ are established. These conditions are based on a recently proved relationship between spectral properties of $\ell $ and oscillation of a certain associated second order differential equation.
LA - eng
KW - singular differential operators; property BD; oscillation criteria; principal solution; singular differential operators; property BD; oscillation criteria; principal solution
UR - http://eudml.org/doc/248150
ER -
References
top- C. D. Ahlbrandt D. B. Hinton. R. T. Lewis, 10.4153/CJM-1981-019-1, Canad. J. Math. 33 (1981), 229-246. (1981) MR0608867DOI10.4153/CJM-1981-019-1
- C. D. Ahlbrandt D. B. Hinton. R. T. Lewis, 10.1016/0022-247X(81)90060-3, J. Math. Anal. Appl. 81 (1981), 234-277. (1981) MR0618771DOI10.1016/0022-247X(81)90060-3
- W. A. Coppel, Disconjugacy, Lectures Notes in Math., No. 220, Springer-Verlag, Berlin, 1971. (1971) Zbl0224.34003MR0460785
- O. Došlý, Spectral properties of a class of singular differential operators, To appear in Math. Nachr. MR1484668
- O. Došlý J. Komenda, Conjugacy criteria and principal solutions of self-adjoint differential equations, Arch. Math. (Brno) 31 (1995), 217-238. (1995) MR1368260
- F. Fiedler, 10.1002/mana.19871310119, Math. Nachr. 131 (1987), 205-218. (1987) Zbl0644.34024MR0908812DOI10.1002/mana.19871310119
- F. Fiedler, 10.1002/mana.19891420116, Math. Nachr. 142 (1989), 235-250. (1989) Zbl0685.34033MR1017382DOI10.1002/mana.19891420116
- I. M. Glazman, Direct Methods of Qualitative Analysis of Singular Differential Operators, Jerusalem, 1965. (1965)
- P. Hartman, 10.1215/S0012-7094-57-02405-5, Duke J. Math. 24 (1956), 25-35. (1956) MR0082591DOI10.1215/S0012-7094-57-02405-5
- D. B. Hinton R. T. Lewis, Discrete spectra criteria for singular differential operators with middle terms, Math. Proc. Cambridge Philos. Soc. 77 (1975), 337-347. (1975) MR0367358
- R. T. Lewis, 10.1090/S0002-9939-1974-0330608-8, Proc. Amer. Mat. Soc. 42 (1974), 480-482. (1974) MR0330608DOI10.1090/S0002-9939-1974-0330608-8
- M. A. Naimark, Linear Differential Operators, Part II. Ungar, New York, 1968. (1968) Zbl0227.34020
- W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, New York, 1980. (1980) Zbl0459.34001MR0606199
- R. L. Sternberg, Variational methods and nonoscillatory theorems for systems of differential equations, Duke J. Math. 19 (1952), 311-322. (1952) MR0048668
- C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Acad. Press, New York, 1968. (1968) Zbl0191.09904MR0463570
- J. Weidmann, Linear Operators in Hilbert Spaces, Springer-Verlag, New York, 1980. (1980) Zbl0434.47001MR0566954
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.