Fractions continues hermitiennes et billard hyperbolique

Pierrick Meignen

Journal de théorie des nombres de Bordeaux (1998)

  • Volume: 10, Issue: 1, page 1-15
  • ISSN: 1246-7405

Abstract

top
The purpose of this paper is to describe a dynamical system ( X , T ) associated to the Hermite algorithm for the continued fraction expansion of real numbers. It is related to trajectories in hyperbolic billiards. We prove the ergodicity of T and we deduce some results.

How to cite

top

Meignen, Pierrick. "Fractions continues hermitiennes et billard hyperbolique." Journal de théorie des nombres de Bordeaux 10.1 (1998): 1-15. <http://eudml.org/doc/248158>.

@article{Meignen1998,
abstract = {Nous proposons de formaliser une méthode d’approximation diophantienne dans $\mathbb \{R\}$ en considérant l’action de $PGL_2 (\mathbb \{Z\})$ sur le demi-plan complexe. On retrouvera le thème classique de la connexion entre développement en fractions continues et flots géodésiques modélisé ici par un billard hyperbolique.},
author = {Meignen, Pierrick},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Hermite continued fractions; ergodic theory; billiards; fundamental invariants},
language = {fre},
number = {1},
pages = {1-15},
publisher = {Université Bordeaux I},
title = {Fractions continues hermitiennes et billard hyperbolique},
url = {http://eudml.org/doc/248158},
volume = {10},
year = {1998},
}

TY - JOUR
AU - Meignen, Pierrick
TI - Fractions continues hermitiennes et billard hyperbolique
JO - Journal de théorie des nombres de Bordeaux
PY - 1998
PB - Université Bordeaux I
VL - 10
IS - 1
SP - 1
EP - 15
AB - Nous proposons de formaliser une méthode d’approximation diophantienne dans $\mathbb {R}$ en considérant l’action de $PGL_2 (\mathbb {Z})$ sur le demi-plan complexe. On retrouvera le thème classique de la connexion entre développement en fractions continues et flots géodésiques modélisé ici par un billard hyperbolique.
LA - fre
KW - Hermite continued fractions; ergodic theory; billiards; fundamental invariants
UR - http://eudml.org/doc/248158
ER -

References

top
  1. [1] R. Adler, L. Flatto, Cross section maps for geodesic flows, Ergodic Theory and Dynamical Systems, Progress in Math.2, (ed. A. Katok, Birkhäuser, Boston, 1980), 103-161. Zbl0496.58009MR670077
  2. [2] N. Bourbaki, Groupes et algèbres de Lie, Ch. 4-6, Hermann, Paris, 1968. Zbl0483.22001MR240238
  3. [3] L.R. Ford, Rational approximations to irrational complex numbers, Trans. Amer. Math. Soc.19 (1918), 1-42. Zbl46.0275.04MR1501085JFM46.0275.04
  4. [4] E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc.77 (1971), 863-877. Zbl0227.53003MR284564
  5. [5] G. Humbert, Sur la méthode d'approximation d'Hermite, Journal de Maths, 2, (1916), 79-103. Zbl46.0271.03JFM46.0271.03
  6. [6] P. Meignen, Groupes de Coxeter et approximation diophantienne, Thèse de l'Université de Caen, France, 1995. 
  7. [7] P. Meignen, Generating series for the Coxeter groups and applications, à paraître dans Contributions to Algebra and Geometry. Zbl0890.20029MR1614425
  8. [8] R. Moeckel, Geodesics on modular surfaces and continued fractions, Ergo. Th. and Dynam. Sys2 (1982), 69-84. Zbl0497.10007MR684245
  9. [9] C. Series, Geometrical Markov coding of geodesics on surfaces of constant negative curvature, Ergo. Th. and Dynam. Sys6 (1986), 601-625. Zbl0593.58033MR873435
  10. [10] C. Series, The modular surface and continued fractions, J. London Math. Soc.31 (1985), 69-80. Zbl0545.30001MR810563
  11. [11] Ya. G. Sinai, Dynamical systems II, Encyclopedia of Maths. Sciences, 2, Springer-Verlag, BerlinHeidelberg, 1989. Zbl0778.00014
  12. [12] Ya. G. Sinai, Geodesic flows on manifolds of constant negative curvature, Dokl. Akad. Nauk. SSSR131 (1960), 752-755; Soviet Math. Dokl.1 (1960), 335-339. Zbl0129.31102MR132997
  13. [13] E.B. Vinberg, Geometry II, Encyclopedia of Maths. Sciences, 29, Springer-Verlag, BerlinHeidelberg, 1993. Zbl0786.00008MR1254931

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.