Primitive substitutive numbers are closed under rational multiplication
Pallavi Ketkar; Luca Q. Zamboni
Journal de théorie des nombres de Bordeaux (1998)
- Volume: 10, Issue: 2, page 315-320
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKetkar, Pallavi, and Zamboni, Luca Q.. "Primitive substitutive numbers are closed under rational multiplication." Journal de théorie des nombres de Bordeaux 10.2 (1998): 315-320. <http://eudml.org/doc/248170>.
@article{Ketkar1998,
abstract = {Let $M(r)$ denote the set of real numbers $\alpha $ whose base-$r$ digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution. We show that the set $M(r)$ is closed under multiplication by rational numbers, but not closed under addition.},
author = {Ketkar, Pallavi, Zamboni, Luca Q.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {substitutive real numbers; automatic real numbers},
language = {eng},
number = {2},
pages = {315-320},
publisher = {Université Bordeaux I},
title = {Primitive substitutive numbers are closed under rational multiplication},
url = {http://eudml.org/doc/248170},
volume = {10},
year = {1998},
}
TY - JOUR
AU - Ketkar, Pallavi
AU - Zamboni, Luca Q.
TI - Primitive substitutive numbers are closed under rational multiplication
JO - Journal de théorie des nombres de Bordeaux
PY - 1998
PB - Université Bordeaux I
VL - 10
IS - 2
SP - 315
EP - 320
AB - Let $M(r)$ denote the set of real numbers $\alpha $ whose base-$r$ digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution. We show that the set $M(r)$ is closed under multiplication by rational numbers, but not closed under addition.
LA - eng
KW - substitutive real numbers; automatic real numbers
UR - http://eudml.org/doc/248170
ER -
References
top- [AlMe] J.-P. Allouche, M. Mendès France, Quasicrystal ising chain and automata theory. J. Statist. Phys.42 (1986), 809-821. Zbl0641.10043MR833222
- [AlZa] J.-P. Allouche, L.Q. Zamboni, Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. J. Number Theory69 (1998), 119-124. Zbl0918.11016MR1611101
- [De] F.M. Dekking, Iteration of maps by an automaton. Discrete Math.126 (1994), 81-86. Zbl0795.68158MR1264477
- [Du] F. Durand, A characterization of substitutive sequences using return words. Discrete Math.179 (1998), 89-101. Zbl0895.68087MR1489074
- [FeMa] S. Ferenczi, C. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory67 (1997), 146-161. Zbl0895.11029MR1486494
- [HoZa] C. Holton, L.Q. Zamboni, Iteration of maps by primitive substitutive sequences. (1998), to appear in Discrete Math. Zbl1196.37026MR1796154
- [Le] S. Lehr, Sums and rational multiples of q-automatic sequences are q-automatic. Theoret. Comp. Sys.108 (1993), 385-391. Zbl0768.11013MR1202029
- [LoPo] J.H. Loxton, A. van der Poorten, Arithmetic properties of automata: regular sequences. J. Reine Angew. Math.392 (1988), 57-69. Zbl0656.10033MR965057
- [Qu] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis. Lecture Notes in Math.1294, Springer-Verlag, Berlin- New York, 1987. Zbl0642.28013MR924156
- [RiZa] R. Risley, L.Q. Zamboni, A generalization of Sturmian flows; combinatorial structure and transcendence. preprint 1998.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.