# Primitive substitutive numbers are closed under rational multiplication

Pallavi Ketkar; Luca Q. Zamboni

Journal de théorie des nombres de Bordeaux (1998)

- Volume: 10, Issue: 2, page 315-320
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topKetkar, Pallavi, and Zamboni, Luca Q.. "Primitive substitutive numbers are closed under rational multiplication." Journal de théorie des nombres de Bordeaux 10.2 (1998): 315-320. <http://eudml.org/doc/248170>.

@article{Ketkar1998,

abstract = {Let $M(r)$ denote the set of real numbers $\alpha $ whose base-$r$ digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution. We show that the set $M(r)$ is closed under multiplication by rational numbers, but not closed under addition.},

author = {Ketkar, Pallavi, Zamboni, Luca Q.},

journal = {Journal de théorie des nombres de Bordeaux},

keywords = {substitutive real numbers; automatic real numbers},

language = {eng},

number = {2},

pages = {315-320},

publisher = {Université Bordeaux I},

title = {Primitive substitutive numbers are closed under rational multiplication},

url = {http://eudml.org/doc/248170},

volume = {10},

year = {1998},

}

TY - JOUR

AU - Ketkar, Pallavi

AU - Zamboni, Luca Q.

TI - Primitive substitutive numbers are closed under rational multiplication

JO - Journal de théorie des nombres de Bordeaux

PY - 1998

PB - Université Bordeaux I

VL - 10

IS - 2

SP - 315

EP - 320

AB - Let $M(r)$ denote the set of real numbers $\alpha $ whose base-$r$ digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution. We show that the set $M(r)$ is closed under multiplication by rational numbers, but not closed under addition.

LA - eng

KW - substitutive real numbers; automatic real numbers

UR - http://eudml.org/doc/248170

ER -

## References

top- [AlMe] J.-P. Allouche, M. Mendès France, Quasicrystal ising chain and automata theory. J. Statist. Phys.42 (1986), 809-821. Zbl0641.10043MR833222
- [AlZa] J.-P. Allouche, L.Q. Zamboni, Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. J. Number Theory69 (1998), 119-124. Zbl0918.11016MR1611101
- [De] F.M. Dekking, Iteration of maps by an automaton. Discrete Math.126 (1994), 81-86. Zbl0795.68158MR1264477
- [Du] F. Durand, A characterization of substitutive sequences using return words. Discrete Math.179 (1998), 89-101. Zbl0895.68087MR1489074
- [FeMa] S. Ferenczi, C. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory67 (1997), 146-161. Zbl0895.11029MR1486494
- [HoZa] C. Holton, L.Q. Zamboni, Iteration of maps by primitive substitutive sequences. (1998), to appear in Discrete Math. Zbl1196.37026MR1796154
- [Le] S. Lehr, Sums and rational multiples of q-automatic sequences are q-automatic. Theoret. Comp. Sys.108 (1993), 385-391. Zbl0768.11013MR1202029
- [LoPo] J.H. Loxton, A. van der Poorten, Arithmetic properties of automata: regular sequences. J. Reine Angew. Math.392 (1988), 57-69. Zbl0656.10033MR965057
- [Qu] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis. Lecture Notes in Math.1294, Springer-Verlag, Berlin- New York, 1987. Zbl0642.28013MR924156
- [RiZa] R. Risley, L.Q. Zamboni, A generalization of Sturmian flows; combinatorial structure and transcendence. preprint 1998.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.