The distribution of square-free numbers of the form [ n c ]

Xiaodong Cao; Wenguang Zhai

Journal de théorie des nombres de Bordeaux (1998)

  • Volume: 10, Issue: 2, page 287-299
  • ISSN: 1246-7405

Abstract

top
It is proved that the sequence [ n c ] ( n = 1 , 2 , ) contains infinite squarefree integers whenever 1 < c < 61 36 = 1 . 6944 , which improves Rieger’s earlier range 1 < c < 1 . 5 .

How to cite

top

Cao, Xiaodong, and Zhai, Wenguang. "The distribution of square-free numbers of the form $[n^c]$." Journal de théorie des nombres de Bordeaux 10.2 (1998): 287-299. <http://eudml.org/doc/248174>.

@article{Cao1998,
abstract = {It is proved that the sequence $[n^c] (n = 1, 2, \cdots )$ contains infinite squarefree integers whenever $1 &lt; c &lt; \frac\{61\}\{36\} = 1.6944 \cdots $, which improves Rieger’s earlier range $1 &lt; c &lt; 1.5$.},
author = {Cao, Xiaodong, Zhai, Wenguang},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {square-free number; exponential sum; exponent pair; distribution of square-free integers; exponential sums},
language = {eng},
number = {2},
pages = {287-299},
publisher = {Université Bordeaux I},
title = {The distribution of square-free numbers of the form $[n^c]$},
url = {http://eudml.org/doc/248174},
volume = {10},
year = {1998},
}

TY - JOUR
AU - Cao, Xiaodong
AU - Zhai, Wenguang
TI - The distribution of square-free numbers of the form $[n^c]$
JO - Journal de théorie des nombres de Bordeaux
PY - 1998
PB - Université Bordeaux I
VL - 10
IS - 2
SP - 287
EP - 299
AB - It is proved that the sequence $[n^c] (n = 1, 2, \cdots )$ contains infinite squarefree integers whenever $1 &lt; c &lt; \frac{61}{36} = 1.6944 \cdots $, which improves Rieger’s earlier range $1 &lt; c &lt; 1.5$.
LA - eng
KW - square-free number; exponential sum; exponent pair; distribution of square-free integers; exponential sums
UR - http://eudml.org/doc/248174
ER -

References

top
  1. [1] R.C. Baker, The square-free divisor problem. Quart. J. Math. Oxford Ser.(2) 45 (1994), no. 179, 269-277. Zbl0812.11053MR1295577
  2. [2] R.C. Baker, G. Harman, J. Rivat, Primes of the form [nc]. J. Number Theory50 (1995), 261-277. Zbl0822.11062MR1316821
  3. [3] E. Bombieri, H. Iwaniec, On the order of ζ(1/2 + it). Ann. Scula Norm. Sup. Pisa Cl. Sci.(4) 13 (1986), no. 3, 449-472. Zbl0615.10047
  4. [4] J.-M. Deshouillers, Sur la répartition des nombers [nc] dans les progressions arithmétiques. C. R. Acad. Sci. Paris Sér. A277 (1973), 647-650. Zbl0265.10024MR337834
  5. [5] E. Fouvry, H. Iwaniec, Exponential sums with monomials. J. Number Theory33 (1989), 311-333. Zbl0687.10028MR1027058
  6. [6] D.R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem. J. Number Theory16 (1983), 242-266. Zbl0513.10042MR698168
  7. [7] M.N. Huxley, M. Nair, Power free values of polynomials III. Proc. London Math. Soc.(3) 41 (1980), 66-82. Zbl0435.10026MR579717
  8. [8] H.-Q. Liu, On the number of abelian groups of given order. Acta Arith.64 (1993), 285-296. Zbl0790.11074MR1225430
  9. [9] H.L. Montgomery, R.C. Vaughan, The distribution of square-free numbers. in Recent Progress in Number Theory vol 1, pp. 247-256, Academic Press, London-New York, 1981. Zbl0462.10029MR637350
  10. [10] M. Nair, Power free values of polynomials. Mathematika23 (1976), 159-183. Zbl0349.10039MR429801
  11. [11] G.J. Rieger, Remark on a paper of Stux concerning squarefree numbers in non-linear sequences. Pacific J. Math.78 (1978), 241-242. Zbl0395.10049MR513296
  12. [12] F. Roesler, Über die Verteilung der Primzahlen in Folgen der Form [f(n +x)]. Acta Arith.35 (1979), 117-174. Zbl0342.10027MR547671
  13. [13] F. Roesler, Squarefree integers in non-linear sequences. Pacific J. math.123 (1986), 223-225. Zbl0562.10017MR834150
  14. [14] B.R. Srinivasan, Lattice problems of many-dimensional hyperboloids II. Acta Arith.37 (1963), 173-204. Zbl0118.28201MR153641
  15. [15] I.E. Stux, Distribution of squarefree integers in non-linear sequences. Pacific J. Math.59 (1975), 577-584. Zbl0297.10033MR387218
  16. [16] J.D. Vaaler, Some extremal problems in Fourier analysis. Bull. Amer. Math. Soc.12 (1985), 183-216. Zbl0575.42003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.