The distribution of square-free numbers of the form
Journal de théorie des nombres de Bordeaux (1998)
- Volume: 10, Issue: 2, page 287-299
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCao, Xiaodong, and Zhai, Wenguang. "The distribution of square-free numbers of the form $[n^c]$." Journal de théorie des nombres de Bordeaux 10.2 (1998): 287-299. <http://eudml.org/doc/248174>.
@article{Cao1998,
abstract = {It is proved that the sequence $[n^c] (n = 1, 2, \cdots )$ contains infinite squarefree integers whenever $1 < c < \frac\{61\}\{36\} = 1.6944 \cdots $, which improves Rieger’s earlier range $1 < c < 1.5$.},
author = {Cao, Xiaodong, Zhai, Wenguang},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {square-free number; exponential sum; exponent pair; distribution of square-free integers; exponential sums},
language = {eng},
number = {2},
pages = {287-299},
publisher = {Université Bordeaux I},
title = {The distribution of square-free numbers of the form $[n^c]$},
url = {http://eudml.org/doc/248174},
volume = {10},
year = {1998},
}
TY - JOUR
AU - Cao, Xiaodong
AU - Zhai, Wenguang
TI - The distribution of square-free numbers of the form $[n^c]$
JO - Journal de théorie des nombres de Bordeaux
PY - 1998
PB - Université Bordeaux I
VL - 10
IS - 2
SP - 287
EP - 299
AB - It is proved that the sequence $[n^c] (n = 1, 2, \cdots )$ contains infinite squarefree integers whenever $1 < c < \frac{61}{36} = 1.6944 \cdots $, which improves Rieger’s earlier range $1 < c < 1.5$.
LA - eng
KW - square-free number; exponential sum; exponent pair; distribution of square-free integers; exponential sums
UR - http://eudml.org/doc/248174
ER -
References
top- [1] R.C. Baker, The square-free divisor problem. Quart. J. Math. Oxford Ser.(2) 45 (1994), no. 179, 269-277. Zbl0812.11053MR1295577
- [2] R.C. Baker, G. Harman, J. Rivat, Primes of the form [nc]. J. Number Theory50 (1995), 261-277. Zbl0822.11062MR1316821
- [3] E. Bombieri, H. Iwaniec, On the order of ζ(1/2 + it). Ann. Scula Norm. Sup. Pisa Cl. Sci.(4) 13 (1986), no. 3, 449-472. Zbl0615.10047
- [4] J.-M. Deshouillers, Sur la répartition des nombers [nc] dans les progressions arithmétiques. C. R. Acad. Sci. Paris Sér. A277 (1973), 647-650. Zbl0265.10024MR337834
- [5] E. Fouvry, H. Iwaniec, Exponential sums with monomials. J. Number Theory33 (1989), 311-333. Zbl0687.10028MR1027058
- [6] D.R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem. J. Number Theory16 (1983), 242-266. Zbl0513.10042MR698168
- [7] M.N. Huxley, M. Nair, Power free values of polynomials III. Proc. London Math. Soc.(3) 41 (1980), 66-82. Zbl0435.10026MR579717
- [8] H.-Q. Liu, On the number of abelian groups of given order. Acta Arith.64 (1993), 285-296. Zbl0790.11074MR1225430
- [9] H.L. Montgomery, R.C. Vaughan, The distribution of square-free numbers. in Recent Progress in Number Theory vol 1, pp. 247-256, Academic Press, London-New York, 1981. Zbl0462.10029MR637350
- [10] M. Nair, Power free values of polynomials. Mathematika23 (1976), 159-183. Zbl0349.10039MR429801
- [11] G.J. Rieger, Remark on a paper of Stux concerning squarefree numbers in non-linear sequences. Pacific J. Math.78 (1978), 241-242. Zbl0395.10049MR513296
- [12] F. Roesler, Über die Verteilung der Primzahlen in Folgen der Form [f(n +x)]. Acta Arith.35 (1979), 117-174. Zbl0342.10027MR547671
- [13] F. Roesler, Squarefree integers in non-linear sequences. Pacific J. math.123 (1986), 223-225. Zbl0562.10017MR834150
- [14] B.R. Srinivasan, Lattice problems of many-dimensional hyperboloids II. Acta Arith.37 (1963), 173-204. Zbl0118.28201MR153641
- [15] I.E. Stux, Distribution of squarefree integers in non-linear sequences. Pacific J. Math.59 (1975), 577-584. Zbl0297.10033MR387218
- [16] J.D. Vaaler, Some extremal problems in Fourier analysis. Bull. Amer. Math. Soc.12 (1985), 183-216. Zbl0575.42003
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.