Boundary layer for Chaffee-Infante type equation
Archivum Mathematicum (1998)
- Volume: 034, Issue: 1, page 217-226
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topTemam, Roger, and Wang, Xiaoming. "Boundary layer for Chaffee-Infante type equation." Archivum Mathematicum 034.1 (1998): 217-226. <http://eudml.org/doc/248189>.
@article{Temam1998,
abstract = {This article is concerned with the nonlinear singular perturbation problem due to small diffusivity in nonlinear evolution equations of Chaffee-Infante type. The boundary layer appearing at the boundary of the domain is fully described by a corrector which is “explicitly" constructed. This corrector allows us to obtain convergence in Sobolev spaces up to the boundary.},
author = {Temam, Roger, Wang, Xiaoming},
journal = {Archivum Mathematicum},
keywords = {Boundary layers; correctors; nonlinear reaction diffusion equations; chaffee-infante equation; corrector; nonlinear diffusion equation},
language = {eng},
number = {1},
pages = {217-226},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Boundary layer for Chaffee-Infante type equation},
url = {http://eudml.org/doc/248189},
volume = {034},
year = {1998},
}
TY - JOUR
AU - Temam, Roger
AU - Wang, Xiaoming
TI - Boundary layer for Chaffee-Infante type equation
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 1
SP - 217
EP - 226
AB - This article is concerned with the nonlinear singular perturbation problem due to small diffusivity in nonlinear evolution equations of Chaffee-Infante type. The boundary layer appearing at the boundary of the domain is fully described by a corrector which is “explicitly" constructed. This corrector allows us to obtain convergence in Sobolev spaces up to the boundary.
LA - eng
KW - Boundary layers; correctors; nonlinear reaction diffusion equations; chaffee-infante equation; corrector; nonlinear diffusion equation
UR - http://eudml.org/doc/248189
ER -
References
top- S. N. Alekseenko, Existence and asymptotic representation of weak solutions to the flowing problem under the condition of regular slippage on solid walls, Siberian Math. J. 35, 2 (1994), 209–229 (1994) Zbl0856.35099MR1288259
- R. Balian, J. L. Peube, ed., Fluid dynamics, Cours de l’École d’Été de Physique Théorique, Les Houches, Gordon and Breach Science Publishers, New-York (1977) (1977) Zbl0348.00025MR0495783
- O. V. Besov V. P. Il’in, S. M. Nikol’skii, Integral representations of functions and imbedding theorems, Vol I, English translation edited by M.H. Taibleson, J. Wiley, New York (1978) (1978) MR0519341
- W. Eckhaus, Asymptotic Analysis of Singular Perturbations, North-Holland (1979) (1979) Zbl0421.34057MR0553107
- P. Germain, Méthodes Asymptotiques en Mécanique des Fluides, in [2] Zbl0387.76001
- O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flows, ed., Gordon and Breach, New York (1969) (1969) MR0254401
- P. Lagerström, Matched Asymptotics Expansion, Ideas and Techniques, Springer-Verlag, New York (1988) (1988) MR0958913
- J. L. Lions, Perturbations singulières dans les problèmes aux limites et en controle optimal, Lecture Notes in Math 323, Springer-Verlag, New York (1973) (1973) Zbl0268.49001MR0600331
- H. K. Moffatt, Six lectures on general fluid dynamics and two on hydromagnetic dynamo theory, in [2] Zbl0367.76001
- O. Oleinik, The Prandtl system of equations in boundary layer theory, Dokl. Akad. Nauk SSSR 150 4(3) (1963), 583–586 (1963) MR0153979
- N. C. Owen J. Rubinstein, P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition, Proc. R. Soc. Lond. A 429 (1990), 505–532 (1990) MR1057968
- J. Rubinstein, P. Sternberg, On the slow motion of vortices in the Ginzburg-Landau heat flow, SIAM J. Math. Anal. 26 (1995), no 6, 1452–1466 (1995) Zbl0838.35102MR1356453
- R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, edition, Springer-Verlag, New York, Berlin (1997) (1997) Zbl0871.35001MR1441312
- R. Temam, X. Wang, Asymptotic analysis of Oseen Type Equations in a Channel at Small Viscosity, IU Math. J. 45 (1996), no.3, 863–916 (1996) Zbl0881.35097MR1422110
- R. Temam, X. Wang, On the behavior of the Navier-Stokes equations at vanishing viscosity, volume dedicated to the memory of E. De Giorgi, Annali della Scuola Normale Superiore di Pisa (to appear)
- R. Temam, X. Wang, Boundary Layers for Oseen’s Type Equation in Space Dimension Three, Russian Journal of Mathematical Physics 5 (1997), no. 2, 227–246 (1997) Zbl0912.35125MR1491635
- M. I. Vishik, L. A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small parameter, Uspekki Mat. Nauk 12 (1957), 3–122 (1957) Zbl0087.29602MR0096041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.