Boundary layer for Chaffee-Infante type equation

Roger Temam; Xiaoming Wang

Archivum Mathematicum (1998)

  • Volume: 034, Issue: 1, page 217-226
  • ISSN: 0044-8753

Abstract

top
This article is concerned with the nonlinear singular perturbation problem due to small diffusivity in nonlinear evolution equations of Chaffee-Infante type. The boundary layer appearing at the boundary of the domain is fully described by a corrector which is “explicitly" constructed. This corrector allows us to obtain convergence in Sobolev spaces up to the boundary.

How to cite

top

Temam, Roger, and Wang, Xiaoming. "Boundary layer for Chaffee-Infante type equation." Archivum Mathematicum 034.1 (1998): 217-226. <http://eudml.org/doc/248189>.

@article{Temam1998,
abstract = {This article is concerned with the nonlinear singular perturbation problem due to small diffusivity in nonlinear evolution equations of Chaffee-Infante type. The boundary layer appearing at the boundary of the domain is fully described by a corrector which is “explicitly" constructed. This corrector allows us to obtain convergence in Sobolev spaces up to the boundary.},
author = {Temam, Roger, Wang, Xiaoming},
journal = {Archivum Mathematicum},
keywords = {Boundary layers; correctors; nonlinear reaction diffusion equations; chaffee-infante equation; corrector; nonlinear diffusion equation},
language = {eng},
number = {1},
pages = {217-226},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Boundary layer for Chaffee-Infante type equation},
url = {http://eudml.org/doc/248189},
volume = {034},
year = {1998},
}

TY - JOUR
AU - Temam, Roger
AU - Wang, Xiaoming
TI - Boundary layer for Chaffee-Infante type equation
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 1
SP - 217
EP - 226
AB - This article is concerned with the nonlinear singular perturbation problem due to small diffusivity in nonlinear evolution equations of Chaffee-Infante type. The boundary layer appearing at the boundary of the domain is fully described by a corrector which is “explicitly" constructed. This corrector allows us to obtain convergence in Sobolev spaces up to the boundary.
LA - eng
KW - Boundary layers; correctors; nonlinear reaction diffusion equations; chaffee-infante equation; corrector; nonlinear diffusion equation
UR - http://eudml.org/doc/248189
ER -

References

top
  1. S. N. Alekseenko, Existence and asymptotic representation of weak solutions to the flowing problem under the condition of regular slippage on solid walls, Siberian Math. J. 35, 2 (1994), 209–229 (1994) Zbl0856.35099MR1288259
  2. R. Balian, J. L. Peube, ed., Fluid dynamics, Cours de l’École d’Été de Physique Théorique, Les Houches, Gordon and Breach Science Publishers, New-York (1977) (1977) Zbl0348.00025MR0495783
  3. O. V. Besov V. P. Il’in, S. M. Nikol’skii, Integral representations of functions and imbedding theorems, Vol I, English translation edited by M.H. Taibleson, J. Wiley, New York (1978) (1978) MR0519341
  4. W. Eckhaus, Asymptotic Analysis of Singular Perturbations, North-Holland (1979) (1979) Zbl0421.34057MR0553107
  5. P. Germain, Méthodes Asymptotiques en Mécanique des Fluides, in [2] Zbl0387.76001
  6. O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flows, ed., Gordon and Breach, New York (1969) (1969) MR0254401
  7. P. Lagerström, Matched Asymptotics Expansion, Ideas and Techniques, Springer-Verlag, New York (1988) (1988) MR0958913
  8. J. L. Lions, Perturbations singulières dans les problèmes aux limites et en controle optimal, Lecture Notes in Math 323, Springer-Verlag, New York (1973) (1973) Zbl0268.49001MR0600331
  9. H. K. Moffatt, Six lectures on general fluid dynamics and two on hydromagnetic dynamo theory, in [2] Zbl0367.76001
  10. O. Oleinik, The Prandtl system of equations in boundary layer theory, Dokl. Akad. Nauk SSSR 150 4(3) (1963), 583–586 (1963) MR0153979
  11. N. C. Owen J. Rubinstein, P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition, Proc. R. Soc. Lond. A 429 (1990), 505–532 (1990) MR1057968
  12. J. Rubinstein, P. Sternberg, On the slow motion of vortices in the Ginzburg-Landau heat flow, SIAM J. Math. Anal. 26 (1995), no 6, 1452–1466 (1995) Zbl0838.35102MR1356453
  13. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, edition, Springer-Verlag, New York, Berlin (1997) (1997) Zbl0871.35001MR1441312
  14. R. Temam, X. Wang, Asymptotic analysis of Oseen Type Equations in a Channel at Small Viscosity, IU Math. J. 45 (1996), no.3, 863–916 (1996) Zbl0881.35097MR1422110
  15. R. Temam, X. Wang, On the behavior of the Navier-Stokes equations at vanishing viscosity, volume dedicated to the memory of E. De Giorgi, Annali della Scuola Normale Superiore di Pisa (to appear) 
  16. R. Temam, X. Wang, Boundary Layers for Oseen’s Type Equation in Space Dimension Three, Russian Journal of Mathematical Physics 5 (1997), no. 2, 227–246 (1997) Zbl0912.35125MR1491635
  17. M. I. Vishik, L. A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small parameter, Uspekki Mat. Nauk 12 (1957), 3–122 (1957) Zbl0087.29602MR0096041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.