On torsion Gorenstein injective modules
Archivum Mathematicum (1998)
- Volume: 034, Issue: 4, page 445-454
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topYi, Okyeon. "On torsion Gorenstein injective modules." Archivum Mathematicum 034.4 (1998): 445-454. <http://eudml.org/doc/248191>.
@article{Yi1998,
abstract = {In this paper, we define Gorenstein injective rings, Gorenstein injective modules and their envelopes. The main topic of this paper is to show that if $D$ is a Gorenstein integral domain and $M$ is a left $D$-module, then the torsion submodule $tGM$ of Gorenstein injective envelope $GM$ of $M$ is also Gorenstein injective. We can also show that if $M$ is a torsion $D$-module of a Gorenstein injective integral domain $D$, then the Gorenstein injective envelope $GM$ of $M$ is torsion.},
author = {Yi, Okyeon},
journal = {Archivum Mathematicum},
keywords = {Nilpotent; Gorenstein Injective Modules; Gorenstein injective rings; Gorenstein injective modules; torsion modules; injective hulls},
language = {eng},
number = {4},
pages = {445-454},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On torsion Gorenstein injective modules},
url = {http://eudml.org/doc/248191},
volume = {034},
year = {1998},
}
TY - JOUR
AU - Yi, Okyeon
TI - On torsion Gorenstein injective modules
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 4
SP - 445
EP - 454
AB - In this paper, we define Gorenstein injective rings, Gorenstein injective modules and their envelopes. The main topic of this paper is to show that if $D$ is a Gorenstein integral domain and $M$ is a left $D$-module, then the torsion submodule $tGM$ of Gorenstein injective envelope $GM$ of $M$ is also Gorenstein injective. We can also show that if $M$ is a torsion $D$-module of a Gorenstein injective integral domain $D$, then the Gorenstein injective envelope $GM$ of $M$ is torsion.
LA - eng
KW - Nilpotent; Gorenstein Injective Modules; Gorenstein injective rings; Gorenstein injective modules; torsion modules; injective hulls
UR - http://eudml.org/doc/248191
ER -
References
top- Bass H., On the ubiquity of Gorenstein rings, Math. Z. 82(1963), 8-28. (1963) Zbl0112.26604MR0153708
- Enochs E., Injective and flat covers, envelopes and resolvents, Israel J of Math. 39(1981), 189-209. (1981) Zbl0464.16019MR0636889
- Enochs E., Jenda O. M. G., Gorenstein injective and projective modules, Math. Z. 220(1995), 611-633. (1995) Zbl0845.16005MR1363858
- Enochs E., Jenda O., Xu J., Covers and envelopes over Gorenstein rings, (to appear in Tsukuba J. Math.) Zbl0895.16001MR1422636
- Yasuo Iwanaga, On rings with finite self-injective dimension, Comm. Algebra, 7(4), (1979), 393-414. (1979) MR0522552
- Yasuo Iwanaga, On rings with finite self-injective dimension II, Tsukuba J. Math. 4(1980), 107-113. (1980) MR0597688
- Rotman J., An introduction to homological algebra, Academic Press Inc., New York, 1979. (1979) Zbl0441.18018MR0538169
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.