Invariant vector fields of Hamiltonians

Jacek Dębecki

Archivum Mathematicum (1998)

  • Volume: 034, Issue: 2, page 295-300
  • ISSN: 0044-8753

Abstract

top
A complete classification of natural transformations of Hamiltonians into vector fields on symplectic manifolds is given herein.

How to cite

top

Dębecki, Jacek. "Invariant vector fields of Hamiltonians." Archivum Mathematicum 034.2 (1998): 295-300. <http://eudml.org/doc/248199>.

@article{Dębecki1998,
abstract = {A complete classification of natural transformations of Hamiltonians into vector fields on symplectic manifolds is given herein.},
author = {Dębecki, Jacek},
journal = {Archivum Mathematicum},
keywords = {symplectic manifold; Hamiltonian lift; natural operator; symplectic manifold; Hamiltonian lift; natural operator},
language = {eng},
number = {2},
pages = {295-300},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Invariant vector fields of Hamiltonians},
url = {http://eudml.org/doc/248199},
volume = {034},
year = {1998},
}

TY - JOUR
AU - Dębecki, Jacek
TI - Invariant vector fields of Hamiltonians
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 2
SP - 295
EP - 300
AB - A complete classification of natural transformations of Hamiltonians into vector fields on symplectic manifolds is given herein.
LA - eng
KW - symplectic manifold; Hamiltonian lift; natural operator; symplectic manifold; Hamiltonian lift; natural operator
UR - http://eudml.org/doc/248199
ER -

References

top
  1. Dȩbecki J., Gancarzewicz J., de León M., Mikulski W., Invariants of Lagrangians and their calssifications, J. Math. Phys., Vol. 35, No. 9, 1994, pp. 4568–4593. (1994) MR1290890
  2. Dȩbecki J., Natural transformations of Lagrangians into p -forms on the tangent bundle; Quantization, Coherent States, and Complex Structures, Plenum Publishing Corp., New York, 1995, pp. 141–146. (1995) MR1403155
  3. Doupovec M., Kurek J., Natural operations of Hamiltonian type on the cotangent bundle, Suppl. Rend. Circ. Mat. Palermo, Serie II 34 (1995). (1995) 
  4. Kolář I., Michor P. W., Slovák J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. (1993) MR1202431
  5. de León M., Rodrigues P. R., Methods of Differential Geometry in Analytical Mechanics, North-Holland Math. Ser., Vol. 152, Amsterdam, 1989. (1989) MR1021489

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.