Paley-Wiener theorems for the Schrodinger operator on

Mohamed Néjib Lazhari

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 2, page 227-235
  • ISSN: 0010-2628

Abstract

top
In this paper we define and study generalized Fourier transforms associated with some class of Schrodinger operators on . Next, we establish Paley-Wiener type theorems which characterize some functional spaces by their generalized Fourier transforms.

How to cite

top

Lazhari, Mohamed Néjib. "Paley-Wiener theorems for the Schrodinger operator on $\mathbb {R}$." Commentationes Mathematicae Universitatis Carolinae 39.2 (1998): 227-235. <http://eudml.org/doc/248219>.

@article{Lazhari1998,
abstract = {In this paper we define and study generalized Fourier transforms associated with some class of Schrodinger operators on $\mathbb \{R\}$. Next, we establish Paley-Wiener type theorems which characterize some functional spaces by their generalized Fourier transforms.},
author = {Lazhari, Mohamed Néjib},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Schrodinger operator; generalized eigenfunctions; generalized Fourier transforms; Paley-Wiener theorems; Schrödinger operator; generalized Fourier transforms; Paley-Wiener theorems},
language = {eng},
number = {2},
pages = {227-235},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Paley-Wiener theorems for the Schrodinger operator on $\mathbb \{R\}$},
url = {http://eudml.org/doc/248219},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Lazhari, Mohamed Néjib
TI - Paley-Wiener theorems for the Schrodinger operator on $\mathbb {R}$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 2
SP - 227
EP - 235
AB - In this paper we define and study generalized Fourier transforms associated with some class of Schrodinger operators on $\mathbb {R}$. Next, we establish Paley-Wiener type theorems which characterize some functional spaces by their generalized Fourier transforms.
LA - eng
KW - Schrodinger operator; generalized eigenfunctions; generalized Fourier transforms; Paley-Wiener theorems; Schrödinger operator; generalized Fourier transforms; Paley-Wiener theorems
UR - http://eudml.org/doc/248219
ER -

References

top
  1. Agranovich Z.S., Marchenko V.A., Inverse problem of scattering theory (in Russian), K.G.U. Karkov, 1960. 
  2. Colin de Verdiere Y., La matrice de scattering pour l'operateur de Schrodinger sur la droite réelle, Séminaire N. Bourbaki, 32e anné, Exposé no. 557, Juin 1980, p. 557-01 à 557-11. 
  3. Faddeev L.D., Inverse problem of quantum scattering theory, J. Soviet Math. 5 (1976), 335-395. (1976) Zbl0373.35014
  4. Faraut J., Décomposition spectrale de l'opérateur de Schrodinger et matrice de diffusion, Séminaire d'analyse harmonique de Tunis, Exposé no. 20, Juin 1979. 
  5. Pogorzelski W., Integral Equation and their Application, first edition, vol. 1, pp. 8-13, Pergamon Press, 1966. MR0201934
  6. Titchmarch E.C., Eigenfunction Expansion Associated with the Second Order Differential Equations, Oxford-Clarendon Press, 1948. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.