Paley-Wiener theorems for the Schrodinger operator on
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 2, page 227-235
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLazhari, Mohamed Néjib. "Paley-Wiener theorems for the Schrodinger operator on $\mathbb {R}$." Commentationes Mathematicae Universitatis Carolinae 39.2 (1998): 227-235. <http://eudml.org/doc/248219>.
@article{Lazhari1998,
abstract = {In this paper we define and study generalized Fourier transforms associated with some class of Schrodinger operators on $\mathbb \{R\}$. Next, we establish Paley-Wiener type theorems which characterize some functional spaces by their generalized Fourier transforms.},
author = {Lazhari, Mohamed Néjib},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Schrodinger operator; generalized eigenfunctions; generalized Fourier transforms; Paley-Wiener theorems; Schrödinger operator; generalized Fourier transforms; Paley-Wiener theorems},
language = {eng},
number = {2},
pages = {227-235},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Paley-Wiener theorems for the Schrodinger operator on $\mathbb \{R\}$},
url = {http://eudml.org/doc/248219},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Lazhari, Mohamed Néjib
TI - Paley-Wiener theorems for the Schrodinger operator on $\mathbb {R}$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 2
SP - 227
EP - 235
AB - In this paper we define and study generalized Fourier transforms associated with some class of Schrodinger operators on $\mathbb {R}$. Next, we establish Paley-Wiener type theorems which characterize some functional spaces by their generalized Fourier transforms.
LA - eng
KW - Schrodinger operator; generalized eigenfunctions; generalized Fourier transforms; Paley-Wiener theorems; Schrödinger operator; generalized Fourier transforms; Paley-Wiener theorems
UR - http://eudml.org/doc/248219
ER -
References
top- Agranovich Z.S., Marchenko V.A., Inverse problem of scattering theory (in Russian), K.G.U. Karkov, 1960.
- Colin de Verdiere Y., La matrice de scattering pour l'operateur de Schrodinger sur la droite réelle, Séminaire N. Bourbaki, 32e anné, Exposé no. 557, Juin 1980, p. 557-01 à 557-11.
- Faddeev L.D., Inverse problem of quantum scattering theory, J. Soviet Math. 5 (1976), 335-395. (1976) Zbl0373.35014
- Faraut J., Décomposition spectrale de l'opérateur de Schrodinger et matrice de diffusion, Séminaire d'analyse harmonique de Tunis, Exposé no. 20, Juin 1979.
- Pogorzelski W., Integral Equation and their Application, first edition, vol. 1, pp. 8-13, Pergamon Press, 1966. MR0201934
- Titchmarch E.C., Eigenfunction Expansion Associated with the Second Order Differential Equations, Oxford-Clarendon Press, 1948.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.