H-sets and cardinal invariants
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 2, page 367-370
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFedeli, Alessandro. "$\omega $H-sets and cardinal invariants." Commentationes Mathematicae Universitatis Carolinae 39.2 (1998): 367-370. <http://eudml.org/doc/248228>.
@article{Fedeli1998,
abstract = {A subset $A$ of a Hausdorff space $X$ is called an $\omega $H-set in $X$ if for every open family $\mathcal \{U\}$ in $X$ such that $A \subset \bigcup \mathcal \{U\}$ there exists a countable subfamily $\mathcal \{V\}$ of $\mathcal \{U\}$ such that $A \subset \bigcup \lbrace \overline\{V\} : V \in \mathcal \{V\} \rbrace $. In this paper we introduce a new cardinal function $t_\{s\theta \}$ and show that $|A| \le 2^\{t_\{s\theta \}(X)\psi _\{c\}(X)\}$ for every $\omega $H-set $A$ of a Hausdorff space $X$.},
author = {Fedeli, Alessandro},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cardinal function; $\omega $H-set; cardinal function of a topological space; H-set; closed pseudocharacter of a space},
language = {eng},
number = {2},
pages = {367-370},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$\omega $H-sets and cardinal invariants},
url = {http://eudml.org/doc/248228},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Fedeli, Alessandro
TI - $\omega $H-sets and cardinal invariants
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 2
SP - 367
EP - 370
AB - A subset $A$ of a Hausdorff space $X$ is called an $\omega $H-set in $X$ if for every open family $\mathcal {U}$ in $X$ such that $A \subset \bigcup \mathcal {U}$ there exists a countable subfamily $\mathcal {V}$ of $\mathcal {U}$ such that $A \subset \bigcup \lbrace \overline{V} : V \in \mathcal {V} \rbrace $. In this paper we introduce a new cardinal function $t_{s\theta }$ and show that $|A| \le 2^{t_{s\theta }(X)\psi _{c}(X)}$ for every $\omega $H-set $A$ of a Hausdorff space $X$.
LA - eng
KW - cardinal function; $\omega $H-set; cardinal function of a topological space; H-set; closed pseudocharacter of a space
UR - http://eudml.org/doc/248228
ER -
References
top- Bella A., A couple of questions concerning cardinal invariants, Q & A in General Topology 14.2 (1996), pages ???. (1996) Zbl0856.54002MR1403339
- Bella A., Cammaroto F., On the cardinality of Urysohn spaces, Canad. Math. Bull. 31 (1988), 153-158. (1988) Zbl0646.54005MR0942065
- Bella A., Yaschenko I.V., Embeddings into first countable spaces with H-closed like properties, preprint. Zbl0939.54003MR1601642
- Bella A., Porter J., Local cardinal functions of H-closed spaces, Comment. Math. Univ. Carolinae 37.2 (1996), 371-374. (1996) Zbl0854.54003MR1399007
- Dow A., An introduction to applications of elementary submodels in topology, Topology Proceedings 13 (1988), 17-72. (1988) MR1031969
- Dow A., More set-theory for topologists, Topology Appl. 64 (1995), 243-300. (1995) Zbl0837.54001MR1342520
- Dow A., Porter J., Cardinalities of H-closed spaces, Topology Proceedings 7 (1982), 27-50. (1982) Zbl0569.54004MR0696618
- Engelking R., General Topology, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). (1989) Zbl0684.54001MR1039321
- Fedeli A., Watson S., Elementary submodels and cardinal functions, Topology Proceedings 20 (1995), 91-110. (1995) Zbl0894.54008MR1429175
- Hodel R.E., Cardinal functions I, 1-61 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.), Elsevier Science Publishers B.V., North Holland (1984). (1984) Zbl0559.54003MR0776620
- Juhàsz I., Cardinal functions in topology - ten years later, Mathematical Centre Tracts 123, Amsterdam (1980). (1980) MR0576927
- Kočinac Lj., On the cardinality of Urysohn and H-closed spaces, 105-111 Proc. of the Mathematical Conference in Priština (1994). (1994) MR1466279
- Veličhko N.V., H-closed topological spaces, Amer. Math. Soc. Transl. 78 (ser. 2) (1969), 103-118. (1969)
- Watson S., The construction of topological spaces: Planks and Resolutions, 675-757 Recent Progress in General Topology (Hušek M. and Van Mill J., eds.), Elsevier Science Publishers, B.V., North Holland (1992). (1992) Zbl0803.54001MR1229141
- Watson S., The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology, Topology Appl. 58 (1994), 25-34. (1994) Zbl0836.54004MR1280708
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.