ω H-sets and cardinal invariants

Alessandro Fedeli

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 2, page 367-370
  • ISSN: 0010-2628

Abstract

top
A subset A of a Hausdorff space X is called an ω H-set in X if for every open family 𝒰 in X such that A 𝒰 there exists a countable subfamily 𝒱 of 𝒰 such that A { V ¯ : V 𝒱 } . In this paper we introduce a new cardinal function t s θ and show that | A | 2 t s θ ( X ) ψ c ( X ) for every ω H-set A of a Hausdorff space X .

How to cite

top

Fedeli, Alessandro. "$\omega $H-sets and cardinal invariants." Commentationes Mathematicae Universitatis Carolinae 39.2 (1998): 367-370. <http://eudml.org/doc/248228>.

@article{Fedeli1998,
abstract = {A subset $A$ of a Hausdorff space $X$ is called an $\omega $H-set in $X$ if for every open family $\mathcal \{U\}$ in $X$ such that $A \subset \bigcup \mathcal \{U\}$ there exists a countable subfamily $\mathcal \{V\}$ of $\mathcal \{U\}$ such that $A \subset \bigcup \lbrace \overline\{V\} : V \in \mathcal \{V\} \rbrace $. In this paper we introduce a new cardinal function $t_\{s\theta \}$ and show that $|A| \le 2^\{t_\{s\theta \}(X)\psi _\{c\}(X)\}$ for every $\omega $H-set $A$ of a Hausdorff space $X$.},
author = {Fedeli, Alessandro},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cardinal function; $\omega $H-set; cardinal function of a topological space; H-set; closed pseudocharacter of a space},
language = {eng},
number = {2},
pages = {367-370},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$\omega $H-sets and cardinal invariants},
url = {http://eudml.org/doc/248228},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Fedeli, Alessandro
TI - $\omega $H-sets and cardinal invariants
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 2
SP - 367
EP - 370
AB - A subset $A$ of a Hausdorff space $X$ is called an $\omega $H-set in $X$ if for every open family $\mathcal {U}$ in $X$ such that $A \subset \bigcup \mathcal {U}$ there exists a countable subfamily $\mathcal {V}$ of $\mathcal {U}$ such that $A \subset \bigcup \lbrace \overline{V} : V \in \mathcal {V} \rbrace $. In this paper we introduce a new cardinal function $t_{s\theta }$ and show that $|A| \le 2^{t_{s\theta }(X)\psi _{c}(X)}$ for every $\omega $H-set $A$ of a Hausdorff space $X$.
LA - eng
KW - cardinal function; $\omega $H-set; cardinal function of a topological space; H-set; closed pseudocharacter of a space
UR - http://eudml.org/doc/248228
ER -

References

top
  1. Bella A., A couple of questions concerning cardinal invariants, Q & A in General Topology 14.2 (1996), pages ???. (1996) Zbl0856.54002MR1403339
  2. Bella A., Cammaroto F., On the cardinality of Urysohn spaces, Canad. Math. Bull. 31 (1988), 153-158. (1988) Zbl0646.54005MR0942065
  3. Bella A., Yaschenko I.V., Embeddings into first countable spaces with H-closed like properties, preprint. Zbl0939.54003MR1601642
  4. Bella A., Porter J., Local cardinal functions of H-closed spaces, Comment. Math. Univ. Carolinae 37.2 (1996), 371-374. (1996) Zbl0854.54003MR1399007
  5. Dow A., An introduction to applications of elementary submodels in topology, Topology Proceedings 13 (1988), 17-72. (1988) MR1031969
  6. Dow A., More set-theory for topologists, Topology Appl. 64 (1995), 243-300. (1995) Zbl0837.54001MR1342520
  7. Dow A., Porter J., Cardinalities of H-closed spaces, Topology Proceedings 7 (1982), 27-50. (1982) Zbl0569.54004MR0696618
  8. Engelking R., General Topology, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). (1989) Zbl0684.54001MR1039321
  9. Fedeli A., Watson S., Elementary submodels and cardinal functions, Topology Proceedings 20 (1995), 91-110. (1995) Zbl0894.54008MR1429175
  10. Hodel R.E., Cardinal functions I, 1-61 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.), Elsevier Science Publishers B.V., North Holland (1984). (1984) Zbl0559.54003MR0776620
  11. Juhàsz I., Cardinal functions in topology - ten years later, Mathematical Centre Tracts 123, Amsterdam (1980). (1980) MR0576927
  12. Kočinac Lj., On the cardinality of Urysohn and H-closed spaces, 105-111 Proc. of the Mathematical Conference in Priština (1994). (1994) MR1466279
  13. Veličhko N.V., H-closed topological spaces, Amer. Math. Soc. Transl. 78 (ser. 2) (1969), 103-118. (1969) 
  14. Watson S., The construction of topological spaces: Planks and Resolutions, 675-757 Recent Progress in General Topology (Hušek M. and Van Mill J., eds.), Elsevier Science Publishers, B.V., North Holland (1992). (1992) Zbl0803.54001MR1229141
  15. Watson S., The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology, Topology Appl. 58 (1994), 25-34. (1994) Zbl0836.54004MR1280708

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.