Convex functions with non-Borel set of Gâteaux differentiability points

Petr Holický; M. Šmídek; Luděk Zajíček

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 3, page 469-482
  • ISSN: 0010-2628

Abstract

top
We show that on every nonseparable Banach space which has a fundamental system (e.gȯn every nonseparable weakly compactly generated space, in particular on every nonseparable Hilbert space) there is a convex continuous function f such that the set of its Gâteaux differentiability points is not Borel. Thereby we answer a question of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand (1979), who gave an example of such a function f on 1 ( 𝔠 ) .

How to cite

top

Holický, Petr, Šmídek, M., and Zajíček, Luděk. "Convex functions with non-Borel set of Gâteaux differentiability points." Commentationes Mathematicae Universitatis Carolinae 39.3 (1998): 469-482. <http://eudml.org/doc/248238>.

@article{Holický1998,
abstract = {We show that on every nonseparable Banach space which has a fundamental system (e.gȯn every nonseparable weakly compactly generated space, in particular on every nonseparable Hilbert space) there is a convex continuous function $f$ such that the set of its Gâteaux differentiability points is not Borel. Thereby we answer a question of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand (1979), who gave an example of such a function $f$ on $\ell ^1(\mathfrak \{c\})$.},
author = {Holický, Petr, Šmídek, M., Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {convex function; Gâteaux differentiability points; Borel set; fundamental system; convex function; Gâteaux differentiability points; Borel set; fundamental system},
language = {eng},
number = {3},
pages = {469-482},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Convex functions with non-Borel set of Gâteaux differentiability points},
url = {http://eudml.org/doc/248238},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Holický, Petr
AU - Šmídek, M.
AU - Zajíček, Luděk
TI - Convex functions with non-Borel set of Gâteaux differentiability points
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 3
SP - 469
EP - 482
AB - We show that on every nonseparable Banach space which has a fundamental system (e.gȯn every nonseparable weakly compactly generated space, in particular on every nonseparable Hilbert space) there is a convex continuous function $f$ such that the set of its Gâteaux differentiability points is not Borel. Thereby we answer a question of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand (1979), who gave an example of such a function $f$ on $\ell ^1(\mathfrak {c})$.
LA - eng
KW - convex function; Gâteaux differentiability points; Borel set; fundamental system; convex function; Gâteaux differentiability points; Borel set; fundamental system
UR - http://eudml.org/doc/248238
ER -

References

top
  1. Argyros S., Mercourakis S., On weakly Lindelöf Banach spaces, Rocky Mountain J. Math. 23 (1993), 395-446. (1993) Zbl0797.46009MR1226181
  2. Diestel J., Sequences and Series in Banach Spaces, Springer-Verlag (1984), New York-Berlin. (1984) MR0737004
  3. Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Longman Scientific & Technical Essex (1993). (1993) Zbl0782.46019MR1211634
  4. Fabian M., Gâteaux Differentiability of Convex Functions and Topology - Weak Asplund Spaces, John Wiley and Sons, Interscience (1997). (1997) Zbl0883.46011MR1461271
  5. Finet C., Godefroy G., Biorthogonal systems and big quotient spaces, Contemporary Mathematics 85 (1989), 87-110. (1989) Zbl0684.46016MR0983383
  6. Godun B.V., Biortogonal'nyje sistemy v prostranstvach ogranichennyh funkcij, Dokl. Akad. Nauk. Ukrain. SSR, Ser. A, n. 3 (1983), 7-9. (1983) MR0698870
  7. Godun B.V., On complete biorthogonal systems in a Banach space, Funkcional. Anal. i Prilozhen. 17 (1) 1-7 (1983). (1983) MR0695091
  8. Godun B.V., Kadec M.I., Banach spaces without complete minimal system, Functional Anal. and Appl. 14 (1980), 301-302. (1980) MR0595733
  9. Habala P., Hájek P., Zizler V., Introduction to Banach spaces II, Lecture Notes, Matfyzpress Prague (1996). (1996) 
  10. Haydon R., On Banach spaces which contain 1 ( τ ) and types of measures on compact spaces, Israel J. Math 28 (1997), 313-324. (1997) MR0511799
  11. Hewitt E., Ross K.A., Abstract Harmonic Analysis, Vol I (1963), Vol II (1970), Springer-Verlag Berlin, New York. MR0551496
  12. Negrepontis S., Banach spaces and Topology, Handbook of Set-Theoretic Topology (1984), North-Holland Amsterdam, New York, Oxford, Tokyo 1045-1142. (1984) Zbl0584.46007MR0776642
  13. Phelps R.R., Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics 1364, Springer-Verlag Berlin, Heidelberg (1993). (1993) Zbl0921.46039MR1238715
  14. Plichko A.N., Banach space without a fundamental biorthogonal system, Soviet Math. Dokl. 22 (1980), 450-453. (1980) Zbl0513.46015
  15. Rainwater J., A class of null sets associated with convex functions on Banach spaces, Bull. Austral. Math. Soc. 42 (1990), 315-322. (1990) Zbl0724.46017MR1073653
  16. Rosenthal H.P., On quasi-complemented subspaces, with an appendix on compactness of operators from L p ( μ ) to L r ( ν ) , J. Functional Analysis 4 (1969), 176-214. (1969) MR0250036
  17. Rudin W., Fourier analysis on groups, Interscience Publishers New York (1967). (1967) MR0152834
  18. Talagrand M., Deux exemples de fonctions convexes, C. R. Acad. Sci. Paris, Serie A - 461 (1979), 288 461-464. (1979) Zbl0398.46037MR0527697
  19. Valdivia M., Simultaneous resolutions of the identity operator in normed spaces, Collect. Math. (1991), 42 265-284. (1991) Zbl0788.47024MR1203185
  20. Zajíček L., A note on partial derivatives of convex functions, Comment. Math. Univ. Carolinae 24 (1983), 89-91. (1983) MR0703927

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.