Convex functions with non-Borel set of Gâteaux differentiability points
Petr Holický; M. Šmídek; Luděk Zajíček
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 3, page 469-482
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHolický, Petr, Šmídek, M., and Zajíček, Luděk. "Convex functions with non-Borel set of Gâteaux differentiability points." Commentationes Mathematicae Universitatis Carolinae 39.3 (1998): 469-482. <http://eudml.org/doc/248238>.
@article{Holický1998,
abstract = {We show that on every nonseparable Banach space which has a fundamental system (e.gȯn every nonseparable weakly compactly generated space, in particular on every nonseparable Hilbert space) there is a convex continuous function $f$ such that the set of its Gâteaux differentiability points is not Borel. Thereby we answer a question of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand (1979), who gave an example of such a function $f$ on $\ell ^1(\mathfrak \{c\})$.},
author = {Holický, Petr, Šmídek, M., Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {convex function; Gâteaux differentiability points; Borel set; fundamental system; convex function; Gâteaux differentiability points; Borel set; fundamental system},
language = {eng},
number = {3},
pages = {469-482},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Convex functions with non-Borel set of Gâteaux differentiability points},
url = {http://eudml.org/doc/248238},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Holický, Petr
AU - Šmídek, M.
AU - Zajíček, Luděk
TI - Convex functions with non-Borel set of Gâteaux differentiability points
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 3
SP - 469
EP - 482
AB - We show that on every nonseparable Banach space which has a fundamental system (e.gȯn every nonseparable weakly compactly generated space, in particular on every nonseparable Hilbert space) there is a convex continuous function $f$ such that the set of its Gâteaux differentiability points is not Borel. Thereby we answer a question of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand (1979), who gave an example of such a function $f$ on $\ell ^1(\mathfrak {c})$.
LA - eng
KW - convex function; Gâteaux differentiability points; Borel set; fundamental system; convex function; Gâteaux differentiability points; Borel set; fundamental system
UR - http://eudml.org/doc/248238
ER -
References
top- Argyros S., Mercourakis S., On weakly Lindelöf Banach spaces, Rocky Mountain J. Math. 23 (1993), 395-446. (1993) Zbl0797.46009MR1226181
- Diestel J., Sequences and Series in Banach Spaces, Springer-Verlag (1984), New York-Berlin. (1984) MR0737004
- Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Longman Scientific & Technical Essex (1993). (1993) Zbl0782.46019MR1211634
- Fabian M., Gâteaux Differentiability of Convex Functions and Topology - Weak Asplund Spaces, John Wiley and Sons, Interscience (1997). (1997) Zbl0883.46011MR1461271
- Finet C., Godefroy G., Biorthogonal systems and big quotient spaces, Contemporary Mathematics 85 (1989), 87-110. (1989) Zbl0684.46016MR0983383
- Godun B.V., Biortogonal'nyje sistemy v prostranstvach ogranichennyh funkcij, Dokl. Akad. Nauk. Ukrain. SSR, Ser. A, n. 3 (1983), 7-9. (1983) MR0698870
- Godun B.V., On complete biorthogonal systems in a Banach space, Funkcional. Anal. i Prilozhen. 17 (1) 1-7 (1983). (1983) MR0695091
- Godun B.V., Kadec M.I., Banach spaces without complete minimal system, Functional Anal. and Appl. 14 (1980), 301-302. (1980) MR0595733
- Habala P., Hájek P., Zizler V., Introduction to Banach spaces II, Lecture Notes, Matfyzpress Prague (1996). (1996)
- Haydon R., On Banach spaces which contain and types of measures on compact spaces, Israel J. Math 28 (1997), 313-324. (1997) MR0511799
- Hewitt E., Ross K.A., Abstract Harmonic Analysis, Vol I (1963), Vol II (1970), Springer-Verlag Berlin, New York. MR0551496
- Negrepontis S., Banach spaces and Topology, Handbook of Set-Theoretic Topology (1984), North-Holland Amsterdam, New York, Oxford, Tokyo 1045-1142. (1984) Zbl0584.46007MR0776642
- Phelps R.R., Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics 1364, Springer-Verlag Berlin, Heidelberg (1993). (1993) Zbl0921.46039MR1238715
- Plichko A.N., Banach space without a fundamental biorthogonal system, Soviet Math. Dokl. 22 (1980), 450-453. (1980) Zbl0513.46015
- Rainwater J., A class of null sets associated with convex functions on Banach spaces, Bull. Austral. Math. Soc. 42 (1990), 315-322. (1990) Zbl0724.46017MR1073653
- Rosenthal H.P., On quasi-complemented subspaces, with an appendix on compactness of operators from to , J. Functional Analysis 4 (1969), 176-214. (1969) MR0250036
- Rudin W., Fourier analysis on groups, Interscience Publishers New York (1967). (1967) MR0152834
- Talagrand M., Deux exemples de fonctions convexes, C. R. Acad. Sci. Paris, Serie A - 461 (1979), 288 461-464. (1979) Zbl0398.46037MR0527697
- Valdivia M., Simultaneous resolutions of the identity operator in normed spaces, Collect. Math. (1991), 42 265-284. (1991) Zbl0788.47024MR1203185
- Zajíček L., A note on partial derivatives of convex functions, Comment. Math. Univ. Carolinae 24 (1983), 89-91. (1983) MR0703927
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.