The ν ( ρ ) -transformation on McBride’s spaces of generalized functions

Domingo Israel Cruz-Báez; Josemar Rodríguez

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 3, page 445-452
  • ISSN: 0010-2628

Abstract

top
An integral transform denoted by ν ( ρ ) that generalizes the well-known Laplace and Meijer transformations, is studied in this paper on certain spaces of generalized functions introduced by A.C. McBride by employing the adjoint method.

How to cite

top

Cruz-Báez, Domingo Israel, and Rodríguez, Josemar. "The $\mathcal {L}_\nu ^{(\rho )}$-transformation on McBride’s spaces of generalized functions." Commentationes Mathematicae Universitatis Carolinae 39.3 (1998): 445-452. <http://eudml.org/doc/248244>.

@article{Cruz1998,
abstract = {An integral transform denoted by $\{\mathcal \{L\}\}_\{\nu \}^\{(\rho )\}$ that generalizes the well-known Laplace and Meijer transformations, is studied in this paper on certain spaces of generalized functions introduced by A.C. McBride by employing the adjoint method.},
author = {Cruz-Báez, Domingo Israel, Rodríguez, Josemar},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Krätzel integral transformation; $L_p$-spaces; distributions; Krätzel transformation; McBride space; distribution; generalized Laplace transformation},
language = {eng},
number = {3},
pages = {445-452},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The $\mathcal \{L\}_\nu ^\{(\rho )\}$-transformation on McBride’s spaces of generalized functions},
url = {http://eudml.org/doc/248244},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Cruz-Báez, Domingo Israel
AU - Rodríguez, Josemar
TI - The $\mathcal {L}_\nu ^{(\rho )}$-transformation on McBride’s spaces of generalized functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 3
SP - 445
EP - 452
AB - An integral transform denoted by ${\mathcal {L}}_{\nu }^{(\rho )}$ that generalizes the well-known Laplace and Meijer transformations, is studied in this paper on certain spaces of generalized functions introduced by A.C. McBride by employing the adjoint method.
LA - eng
KW - Krätzel integral transformation; $L_p$-spaces; distributions; Krätzel transformation; McBride space; distribution; generalized Laplace transformation
UR - http://eudml.org/doc/248244
ER -

References

top
  1. Barrios J.A., Betancor J.J., On a generalization of Laplace transform due to E. Krätzel, J. Inst. Math. & Comp. Sci. (Math. Ser.) 3 (4) (1990), 273-291. (1990) Zbl0844.44002MR1104376
  2. Barrios J.A., Betancor J.J., A Real Inversion Formula for the Krätzel's Generalized Laplace Transform, Extracta Mathematicae 6 (2) (1991), 55-57. (1991) 
  3. Erdelyi A., Magnus W., Oberhettinger F., Tricomi F., Tables of Integral Transforms, Vol. II, McGraw-Hill, New York, 1954. Zbl0058.34103MR0065685
  4. Kilbas A.A., Bonilla B., Rivero M., Rodríguez J., Trujillo J., Bessel type function and Bessel type integral transform on spaces p , μ and p , μ ' , to appear. 
  5. Krätzel E., Eine verallgemeinerung der Laplace- und Meijer-transformation, Wiss. Z. Univ. Jena Math. Naturw. Reihe 5 (1965), 369-381. (1965) MR0231142
  6. Krätzel E., Die faltung der L-transformation, Wiss. Z. Univ. Jena Math. Naturw. Reihe 5 (1965), 383-390. (1965) MR0231143
  7. Krätzel E., Integral transformations of Bessel-type, Proceeding of International Conference on Generalized Functions and Operational Calculus, Varna, 1975, pp.148-155. MR0547343
  8. Krätzel E., Menzer H., Verallgemeinerte Hankel-Funktionen, Pub. Math. Debrecen 18, fasc. 1-4 (1973), 139-148. (1973) MR0310309
  9. McBride A.C., Fractional Calculus and Integral Transforms of Generalized Functions, Res. Notes Math., 31, Pitman Press, San Francisco, London, Melbourne, 1979. Zbl0423.46029MR0550881
  10. McBride A.C., Fractional powers of a class ordinary differential operators, Proc. London Math. Soc., Ser. 3 45 (1982), 3 519-546. (1982) MR0675420
  11. Rao G.L.N., Debnath L., A generalized Meijer transformation, Int. J. Math. & Math. Sci. 8:2 (1985), 359-365. (1985) Zbl0597.46036MR0797835
  12. Zemanian A.H., A distributional K transformation, Siam J. Appl. Math. 14 6 (1966), 1350-1365. (1966) 
  13. Zemanian A.H, Generalized Integral Transformation, Interscience Publisher, New York, 1968. MR0423007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.