Cauchy problem for multidimensional coupled system of nonlinear Schrödinger equation and generalized IMBq equation

Chen Guowang

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 1, page 15-38
  • ISSN: 0010-2628

Abstract

top
The existence, uniqueness and regularity of the generalized local solution and the classical local solution to the periodic boundary value problem and Cauchy problem for the multidimensional coupled system of a nonlinear complex Schrödinger equation and a generalized IMBq equation i ε t + 2 ε - u ε = 0 , u t t - 2 u - a 2 u t t = 2 f ( u ) + 2 ( | ε | 2 ) are proved.

How to cite

top

Guowang, Chen. "Cauchy problem for multidimensional coupled system of nonlinear Schrödinger equation and generalized IMBq equation." Commentationes Mathematicae Universitatis Carolinae 39.1 (1998): 15-38. <http://eudml.org/doc/248275>.

@article{Guowang1998,
abstract = {The existence, uniqueness and regularity of the generalized local solution and the classical local solution to the periodic boundary value problem and Cauchy problem for the multidimensional coupled system of a nonlinear complex Schrödinger equation and a generalized IMBq equation \[ i\varepsilon \_t+\nabla ^2\varepsilon -u\varepsilon =0, \]\[ u\_\{tt\}-\nabla ^2u-a\nabla ^2u\_\{tt\}=\nabla ^2f(u)+\nabla ^2(|\varepsilon |^2) \] are proved.},
author = {Guowang, Chen},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {coupled system of nonlinear Schrödinger equation and generalized IMBq; multidimensional; periodic boundary value problem; Cauchy problem; generalized local solution; classical local solution; periodic boundary value problem; generalized local solution; classical local solution},
language = {eng},
number = {1},
pages = {15-38},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Cauchy problem for multidimensional coupled system of nonlinear Schrödinger equation and generalized IMBq equation},
url = {http://eudml.org/doc/248275},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Guowang, Chen
TI - Cauchy problem for multidimensional coupled system of nonlinear Schrödinger equation and generalized IMBq equation
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 1
SP - 15
EP - 38
AB - The existence, uniqueness and regularity of the generalized local solution and the classical local solution to the periodic boundary value problem and Cauchy problem for the multidimensional coupled system of a nonlinear complex Schrödinger equation and a generalized IMBq equation \[ i\varepsilon _t+\nabla ^2\varepsilon -u\varepsilon =0, \]\[ u_{tt}-\nabla ^2u-a\nabla ^2u_{tt}=\nabla ^2f(u)+\nabla ^2(|\varepsilon |^2) \] are proved.
LA - eng
KW - coupled system of nonlinear Schrödinger equation and generalized IMBq; multidimensional; periodic boundary value problem; Cauchy problem; generalized local solution; classical local solution; periodic boundary value problem; generalized local solution; classical local solution
UR - http://eudml.org/doc/248275
ER -

References

top
  1. Makhankov V.G., On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq's equations, Phys. Lett. 50 A (1974), 42-44. (1974) 
  2. Makhankov V.G., Dynamics of classical solitons (in non-integrable systems), Physics Reports, A review section of Physics Letters (section C), MR0481361
  3. Nishikawa K., Hajo H., Mima K., Ikezi H., Coupled nonlinear electron-plasma and ion- acoustic waves, Phys. Rev. Lett. 33 (1974), 148-150. (1974) 
  4. Makhankov V.G., Preprint, JINR E5-8359, Dubna, 1974. 
  5. Bogoluosksy J.L., Makhankov V.G., Preprint, JINR E4-9425, Dubna, 1975. 
  6. Reed M., Simon B., Method of Modern Mathematical Physics, Academic Press, New York and London, 1972. MR0493419
  7. Vejvoda O., Partial Differential Equations: Time-Periodic Solutions, Martinus Nijhoff Publishers, The Hague, Boston, London, 1982. Zbl0501.35001
  8. Maz'ja V.G., Sobolev Spaces, Springer-Verlag, 1985. Zbl0692.46023MR0817985
  9. Friedman A., Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., 1964. Zbl0173.12701MR0181836
  10. Chen Guowang, Yang Zhijian, Zhao Zhancai, Initial value problems and first boundary problems for a class of quasilinear wave equations, Acta Mathematicae Applicatae Sinica 9 (1993), 289-301. (1993) Zbl0822.35094
  11. Sun Hesheng, On the mixed initial boundary value problem for semilinear degenerate evolution equation (in Chinese), Chinese Annals of Mathematics 8 (A) (1987), 32-43. (1987) MR0901636
  12. Yosida K., Functional Analysis, Springer, 1978. Zbl0830.46001MR0500055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.