Order-like structure of monotonically normal spaces
Scott W. Williams; Hao Xuan Zhou
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 1, page 207-217
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topWilliams, Scott W., and Zhou, Hao Xuan. "Order-like structure of monotonically normal spaces." Commentationes Mathematicae Universitatis Carolinae 39.1 (1998): 207-217. <http://eudml.org/doc/248276>.
@article{Williams1998,
abstract = {For a compact monotonically normal space X we prove: (1) $X$ has a dense set of points with a well-ordered neighborhood base (and so $X$ is co-absolute with a compact orderable space); (2) each point of $X$ has a well-ordered neighborhood $\pi $-base (answering a question of Arhangel’skii); (3) $X$ is hereditarily paracompact iff $X$ has countable tightness. In the process we introduce weak-tightness, a notion key to the results above and yielding some cardinal function results on monotonically normal spaces.},
author = {Williams, Scott W., Zhou, Hao Xuan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {monotonically normal; compactness; linear ordered spaces; monotonically normal space; orderable space; compactness},
language = {eng},
number = {1},
pages = {207-217},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Order-like structure of monotonically normal spaces},
url = {http://eudml.org/doc/248276},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Williams, Scott W.
AU - Zhou, Hao Xuan
TI - Order-like structure of monotonically normal spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 1
SP - 207
EP - 217
AB - For a compact monotonically normal space X we prove: (1) $X$ has a dense set of points with a well-ordered neighborhood base (and so $X$ is co-absolute with a compact orderable space); (2) each point of $X$ has a well-ordered neighborhood $\pi $-base (answering a question of Arhangel’skii); (3) $X$ is hereditarily paracompact iff $X$ has countable tightness. In the process we introduce weak-tightness, a notion key to the results above and yielding some cardinal function results on monotonically normal spaces.
LA - eng
KW - monotonically normal; compactness; linear ordered spaces; monotonically normal space; orderable space; compactness
UR - http://eudml.org/doc/248276
ER -
References
top- Arhangel'skii A.V., Structure and classification of topological spaces and cardinal invariants, Russian Math. Surv. 33 (1977), 33-95. (1977) MR0526012
- Arhangel'skii A.V., Some properties of radial spaces, Math. Zametki 27 (1980), 95-104. (1980) MR0562480
- Balogh Z., Rudin M.E., Monotone Normality, Topology and Appl. 47 (1992), 115-127. (1992) Zbl0769.54022MR1193194
- Borges C.J.R., On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16. (1966) Zbl0175.19802MR0188982
- Borges C.J.R., Direct sums of stratifiable spaces, Fundamenta Math. 100 (1978), 95-99. (1978) Zbl0389.54018MR0505891
- Engelking R., General Topology, Polish Scientific Publishers, 1977. Zbl0684.54001MR0500780
- Gruenhage G., Generalized metric spaces, Handbook of Set-theoretic Topology, North Holland, 1984, pp.423-502. Zbl0794.54034MR0776629
- Heath R.W., Lutzer D.J., Zenor P.L., Monotonically normal spaces, Trans. Amer. Math. Soc. 155 (1973), 481-494. (1973) Zbl0269.54009MR0372826
- Hodel R., Cardinal Functions I, Handbook of set-theoretic Topology, North Holland, 1984, pp.1-61. Zbl0559.54003MR0776620
- Juhasz I., Cardinal Functions in Topology, Math. Centre Tracts 34, 1971. Zbl0479.54001MR0340021
- Nikiel J., Some problems on continuous images of compact ordered spaces, Quest. & And. in Gen. Top. 4 (1986), 117-128. (1986) MR0917893
- Nyikos P.J., Purisch S., Monotone normality and paracompactness in scattered spaces, Annals on the New York Acad. Sci. 552, 1989, pp.124-137. Zbl0887.54019MR1020780
- Ostacewski A., Monotone normality and -diagonals in the class of inductively generated spaces, Coll. Math. Soc. Janos Bolyai, Topology 23 (1978), 905-930. (1978) MR0588837
- Rudin M.E., Dowker spaces, Handbook of Set-theoretic Topology, North Holland, 1984, pp.761-780. Zbl0566.54009MR0776636
- Rudin M.E., Monotone normality and compactness, to appear in Topology and Appl. volume of Ehime Conference Proceedings, 1995. Zbl0874.54004MR1425938
- Rudin M.E., Compact monotonically normal spaces, invited lecture, 8th Prague Topological Symposium, August, 1996. Zbl0983.54021
- Stephenson R.M., Jr., Initially -compact and related spaces, Handbook of Set-theoretic Topology, North Holland, 1984, pp.603-602. MR0776632
- HASH(0x976e968), The University of Houston Problem Book, 6/30/90, .
- Williams S.W., Trees, Gleason spaces, and co-absolutes of -, Trans. Amer. Math. Soc. 271 (1982), 83-100. (1982) MR0648079
- Williams S.W., Zhou H., Strong versions of normality, Proceedings of the New York Conference on Topology and its Applications. Zbl0797.54011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.