Inverse distributions: the logarithmic case
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 4, page 785-795
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSacchetti, Dario. "Inverse distributions: the logarithmic case." Commentationes Mathematicae Universitatis Carolinae 39.4 (1998): 785-795. <http://eudml.org/doc/248279>.
@article{Sacchetti1998,
abstract = {In this paper it is proved that the distribution of the logarithmic series is not invertible while it is found to be invertible if corrected by a suitable affinity. The inverse distribution of the corrected logarithmic series is then derived. Moreover the asymptotic behaviour of the variance function of the logarithmic distribution is determined. It is also proved that the variance function of the inverse distribution of the corrected logarithmic distribution has a cubic asymptotic behaviour.},
author = {Sacchetti, Dario},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {natural exponential family; Laplace transform; variance function; logarithmic distribution; inverse distribution; variance function},
language = {eng},
number = {4},
pages = {785-795},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Inverse distributions: the logarithmic case},
url = {http://eudml.org/doc/248279},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Sacchetti, Dario
TI - Inverse distributions: the logarithmic case
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 4
SP - 785
EP - 795
AB - In this paper it is proved that the distribution of the logarithmic series is not invertible while it is found to be invertible if corrected by a suitable affinity. The inverse distribution of the corrected logarithmic series is then derived. Moreover the asymptotic behaviour of the variance function of the logarithmic distribution is determined. It is also proved that the variance function of the inverse distribution of the corrected logarithmic distribution has a cubic asymptotic behaviour.
LA - eng
KW - natural exponential family; Laplace transform; variance function; logarithmic distribution; inverse distribution; variance function
UR - http://eudml.org/doc/248279
ER -
References
top- Barndorff-Nielsen O., Information and exponential families in statistical inference, Wiley, New York, 1978. MR0489333
- Dieudonné, J., Infinitesimal Calculus, Houghton Mifflin, Boston, 1971. MR0349286
- Fichtenholz G.M., Functional Series, Gordon and Breach, Science Publishers, 1970. Zbl0213.35001MR0463743
- Guest G., Laplace Transform and an Introduction to Distributions, Ellis Horwood, 1991. MR1287158
- Johnson N.L., Kotz S., Discrete Distributions, Houghton Mifflin, Boston, 1969. Zbl1092.62010MR0268996
- Jorgensen B., Martinez J.R., Tsao M., Asymptotic behaviour of the variance function, Scand. J. Statist. 21 (1994), 223-243. (1994) MR1292637
- Letac G., La reciprocité des familles exponentielles naturelles sur , C.R. Acad. Sci. Paris 303 Ser. I2 (1986), 61-64. (1986) MR0851270
- Letac G., Lectures on natural exponential families and their variance functions, I.M.P.A., Rio de Janeiro, 1991. Zbl0983.62501MR1182991
- Letac G., Mora M., Natural real exponential families with cubic variance functions, Ann. Statist. 18 (1990), 1-37. (1990) Zbl0714.62010MR1041384
- Mora M., Classification de fonctions variance cubiques des familles exponentielles sur , C.R. Acad. Sci. Paris Sér I Math. 302 (1986), 587-590. (1986) MR0844163
- Morris C.N., Natural exponential families with quadratic variance functions, Ann. Statist. 10 (1982), 65-80. (1982) Zbl0498.62015MR0642719
- Sacchetti D., Inverse distribution: an example of non existence, Atti dell' Accademia delle Scienze Lettere ed Arti di Palermo, 1993.
- Seshadri V., The Inverse Gaussian distribution, Oxford University Press, Oxford, 1993. Zbl0942.62011MR1306281
- Tweedie M.C.K., Inverse statistical variates, Nature 155 (1945), 453. (1945) Zbl0063.07892MR0011907
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.