Proper forcings and absoluteness in
Itay Neeman; Jindřich Zapletal
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 2, page 281-301
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNeeman, Itay, and Zapletal, Jindřich. "Proper forcings and absoluteness in $L(\mathbb {R})$." Commentationes Mathematicae Universitatis Carolinae 39.2 (1998): 281-301. <http://eudml.org/doc/248282>.
@article{Neeman1998,
abstract = {We show that in the presence of large cardinals proper forcings do not change the theory of $L(\mathbb \{R\})$ with real and ordinal parameters and do not code any set of ordinals into the reals unless that set has already been so coded in the ground model.},
author = {Neeman, Itay, Zapletal, Jindřich},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {proper forcing; large cardinals; proper forcing; large cardinals},
language = {eng},
number = {2},
pages = {281-301},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Proper forcings and absoluteness in $L(\mathbb \{R\})$},
url = {http://eudml.org/doc/248282},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Neeman, Itay
AU - Zapletal, Jindřich
TI - Proper forcings and absoluteness in $L(\mathbb {R})$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 2
SP - 281
EP - 301
AB - We show that in the presence of large cardinals proper forcings do not change the theory of $L(\mathbb {R})$ with real and ordinal parameters and do not code any set of ordinals into the reals unless that set has already been so coded in the ground model.
LA - eng
KW - proper forcing; large cardinals; proper forcing; large cardinals
UR - http://eudml.org/doc/248282
ER -
References
top- Beller A., Jensen R.B., Welch P., Coding the Universe, Oxford University Press Oxford (1985). (1985) MR0645538
- Foreman M., Magidor M., Large cardinals and definable counterexamples to the continuum hypothesis, Ann. Pure Appl. Logic 76 (1995), 47-97. (1995) Zbl0837.03040MR1359154
- Foreman M., Magidor M., Shelah S., Martin's Maximum, saturated ideals and nonregular ultrafilters, Ann. Math. 127 (1988), 1-47. (1988) Zbl0645.03028MR0924672
- Hájek P., Vopěnka P., The Theory of Semisets, North Holland Amsterdam (1972). (1972) MR0289286
- Jech T., Set Theory, (1978), Academic Press New York. (1978) Zbl0419.03028MR0506523
- Jech T., Magidor M., Mitchell W.J., Prikry K., Precipitous ideals, J. Symbolic Logic 45 (1980), 1-8. (1980) Zbl0437.03026MR0560220
- Moschovakis Y.N., Descriptive Set Theory, (1980), North Holland Amsterdam. (1980) Zbl0433.03025MR0561709
- Martin D.A., Steel J.R., A proof of projective determinacy, J. Amer. Math. Soc. 2 71-125 (1989). (1989) Zbl0668.03021MR0955605
- Neeman I., Zapletal J., Proper forcing and , J. London Math. Soc. submitted.
- Schimmerling E., handwritten notes of W.H. Woodin's lectures, .
- Shelah S., Proper Forcing, Springer Verlag Berlin (1981), Lecture Notes in Math. 940. (1981) MR0675955
- Woodin W.H., Supercompact cardinals, sets of reals and weakly homogeneous trees, Proc. Natl. Acad. Sci. USA 85 (1988), 6587-6591. (1988) Zbl0656.03037MR0959110
- Woodin W.H., The axiom of determinacy, forcing axioms and the nonstationary ideal, to appear. Zbl0954.03046MR1713438
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.