A C * -dynamical system with Dedekind zeta partition function and spontaneous symmetry breaking

Paula B. Cohen

Journal de théorie des nombres de Bordeaux (1999)

  • Volume: 11, Issue: 1, page 15-30
  • ISSN: 1246-7405

Abstract

top
In this paper we extend to arbitrary number fields a construction of Bost-Connes of a C * -dynamical system with spontaneous symmetry breaking and partition function the Riemann zeta function.

How to cite

top

Cohen, Paula B.. "A $C^*$-dynamical system with Dedekind zeta partition function and spontaneous symmetry breaking." Journal de théorie des nombres de Bordeaux 11.1 (1999): 15-30. <http://eudml.org/doc/248327>.

@article{Cohen1999,
abstract = {In this paper we extend to arbitrary number fields a construction of Bost-Connes of a $C^*$-dynamical system with spontaneous symmetry breaking and partition function the Riemann zeta function.},
author = {Cohen, Paula B.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Bost-Connes theory; quantum theory; quantum statistical mechanics; Riemann zeta function; partition function; spontaneous symmetry breaking; Riemann hypothesis; -dynamical system; Dedekind zeta function},
language = {eng},
number = {1},
pages = {15-30},
publisher = {Université Bordeaux I},
title = {A $C^*$-dynamical system with Dedekind zeta partition function and spontaneous symmetry breaking},
url = {http://eudml.org/doc/248327},
volume = {11},
year = {1999},
}

TY - JOUR
AU - Cohen, Paula B.
TI - A $C^*$-dynamical system with Dedekind zeta partition function and spontaneous symmetry breaking
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 1
SP - 15
EP - 30
AB - In this paper we extend to arbitrary number fields a construction of Bost-Connes of a $C^*$-dynamical system with spontaneous symmetry breaking and partition function the Riemann zeta function.
LA - eng
KW - Bost-Connes theory; quantum theory; quantum statistical mechanics; Riemann zeta function; partition function; spontaneous symmetry breaking; Riemann hypothesis; -dynamical system; Dedekind zeta function
UR - http://eudml.org/doc/248327
ER -

References

top
  1. [ALR] J. Arledge, M. Laca and I. Raeburn, Semigroup crossed products and Hecke algebras arising from number fields, Doc. Mathematica2 (1997) 115-138. Zbl0940.47062MR1451963
  2. [BC] J-B. Bost and A. Connes, Hecke algebras, Type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (New Series), 1 (1995), 411-457. Zbl0842.46040MR1366621
  3. [C] A. Connes, Formule de trace en géométrie non commutative et hypothèse de Riemann, C. R. Acad. Sci. Paris t.323, Série 1 (Analyse), (1996) 1231-1236. Zbl0864.46042MR1428542
  4. [HaLe] D. Harari and E. Leichtnam, Extension du phénomène de brisure spontanée de symétrie de Bost-Connes au cas des corps globaux quelconques, Selecta Mathematica, New Series 3 (1997), 205-243. Zbl0924.46051MR1466166
  5. [J] B. Julia, Statistical Theory of Numbers, in Number Theory and Physics, Les Houches Winter School, J-M. Luck, P. Moussa, M. Waldschmidt eds., Springer Proceedings in Physics 47 (1990), 276-293. Zbl0727.11033MR1058473
  6. [L] M. Laca, Semigroups of * -endomorphisms, Dirichlet series and Phase Transitions, J. Functional Analysis, to appear. Zbl0957.46039MR1608003
  7. [LR1] M. Laca and I. Raeburn, Semigroup crossed products and the Toeplitz algebras of non-abelian groups, J. Functional Analysis139 (1996), 415-440. Zbl0887.46040MR1402771
  8. [LR2] M. Laca and I. Raeburn, A semigroup crossed product arising in number theory, J. London Math. Soc., to appear. Zbl0922.46058MR1688505
  9. [Lg] S. Lang, Algebraic Number Theory, Second Edition, Springer-Verlag, BerlinHeidelbergNew YorkTokyo, 1994. Zbl0811.11001MR1282723
  10. [N] J. Neukirch, Class Field Theory, Grund. der math. Wissen. 280, Springer-Verlag, BerlinHeidelbergNew YorkTokyo, 1980. Zbl0587.12001MR819231
  11. [Ni] A. Nica, C* - algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory27 (1992), 17-52. Zbl0809.46058MR1241114

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.