Subalgebras of finite codimension in symplectic Lie algebra

Mohammed Benalili; Abdelkader Boucherif

Archivum Mathematicum (1999)

  • Volume: 035, Issue: 2, page 103-114
  • ISSN: 0044-8753

Abstract

top
Subalgebras of germs of vector fields leaving 0 fixed in R 2 n , of finite codimension in symplectic Lie algebra contain the ideal of germs infinitely flat at 0 . We give an application.

How to cite

top

Benalili, Mohammed, and Boucherif, Abdelkader. "Subalgebras of finite codimension in symplectic Lie algebra." Archivum Mathematicum 035.2 (1999): 103-114. <http://eudml.org/doc/248359>.

@article{Benalili1999,
abstract = {Subalgebras of germs of vector fields leaving $0$ fixed in $R^\{2n\}$, of finite codimension in symplectic Lie algebra contain the ideal of germs infinitely flat at $0$. We give an application.},
author = {Benalili, Mohammed, Boucherif, Abdelkader},
journal = {Archivum Mathematicum},
keywords = {Hamiltonian vector fields; Poisson bracket; pseudogroup action; Hamiltonian vector fields; Poisson bracket; pseudogroup action},
language = {eng},
number = {2},
pages = {103-114},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Subalgebras of finite codimension in symplectic Lie algebra},
url = {http://eudml.org/doc/248359},
volume = {035},
year = {1999},
}

TY - JOUR
AU - Benalili, Mohammed
AU - Boucherif, Abdelkader
TI - Subalgebras of finite codimension in symplectic Lie algebra
JO - Archivum Mathematicum
PY - 1999
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 035
IS - 2
SP - 103
EP - 114
AB - Subalgebras of germs of vector fields leaving $0$ fixed in $R^{2n}$, of finite codimension in symplectic Lie algebra contain the ideal of germs infinitely flat at $0$. We give an application.
LA - eng
KW - Hamiltonian vector fields; Poisson bracket; pseudogroup action; Hamiltonian vector fields; Poisson bracket; pseudogroup action
UR - http://eudml.org/doc/248359
ER -

References

top
  1. Bénalili M., Fibrés naturels définis sur la catégorie des Γ - variétés, Circolo Mat. di Palermo, 13, (1994), 309-328. (1994) MR1344871
  2. Epstein D. B. A., Thurston W. P., Transformation groups and natural bundles, Proc. London Math. Soc. 38 (1979), 219-237. (1979) Zbl0409.58001MR0531161
  3. Omori H., Infinite dimensional Lie transformation groups, Lect. Notes in Math. (427), Springer Verlag. Zbl0328.58005MR0431262
  4. Libermann P., Marle C. M., Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Company Holland (1987). (1987) Zbl0643.53002MR0882548
  5. Palais R. S., Terng C. L., Natural bundles have finite order, Topology 16 (1978), 271-277. (1978) MR0467787

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.