Subalgebras of finite codimension in symplectic Lie algebra
Mohammed Benalili; Abdelkader Boucherif
Archivum Mathematicum (1999)
- Volume: 035, Issue: 2, page 103-114
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBenalili, Mohammed, and Boucherif, Abdelkader. "Subalgebras of finite codimension in symplectic Lie algebra." Archivum Mathematicum 035.2 (1999): 103-114. <http://eudml.org/doc/248359>.
@article{Benalili1999,
abstract = {Subalgebras of germs of vector fields leaving $0$ fixed in $R^\{2n\}$, of finite codimension in symplectic Lie algebra contain the ideal of germs infinitely flat at $0$. We give an application.},
author = {Benalili, Mohammed, Boucherif, Abdelkader},
journal = {Archivum Mathematicum},
keywords = {Hamiltonian vector fields; Poisson bracket; pseudogroup action; Hamiltonian vector fields; Poisson bracket; pseudogroup action},
language = {eng},
number = {2},
pages = {103-114},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Subalgebras of finite codimension in symplectic Lie algebra},
url = {http://eudml.org/doc/248359},
volume = {035},
year = {1999},
}
TY - JOUR
AU - Benalili, Mohammed
AU - Boucherif, Abdelkader
TI - Subalgebras of finite codimension in symplectic Lie algebra
JO - Archivum Mathematicum
PY - 1999
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 035
IS - 2
SP - 103
EP - 114
AB - Subalgebras of germs of vector fields leaving $0$ fixed in $R^{2n}$, of finite codimension in symplectic Lie algebra contain the ideal of germs infinitely flat at $0$. We give an application.
LA - eng
KW - Hamiltonian vector fields; Poisson bracket; pseudogroup action; Hamiltonian vector fields; Poisson bracket; pseudogroup action
UR - http://eudml.org/doc/248359
ER -
References
top- Bénalili M., Fibrés naturels définis sur la catégorie des variétés, Circolo Mat. di Palermo, 13, (1994), 309-328. (1994) MR1344871
- Epstein D. B. A., Thurston W. P., Transformation groups and natural bundles, Proc. London Math. Soc. 38 (1979), 219-237. (1979) Zbl0409.58001MR0531161
- Omori H., Infinite dimensional Lie transformation groups, Lect. Notes in Math. (427), Springer Verlag. Zbl0328.58005MR0431262
- Libermann P., Marle C. M., Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Company Holland (1987). (1987) Zbl0643.53002MR0882548
- Palais R. S., Terng C. L., Natural bundles have finite order, Topology 16 (1978), 271-277. (1978) MR0467787
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.