Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients

M. M. Cavalcanti

Archivum Mathematicum (1999)

  • Volume: 035, Issue: 1, page 29-57
  • ISSN: 0044-8753

Abstract

top
In this paper we study the boundary exact controllability for the equation t α ( t ) y t - j = 1 n x j β ( t ) a ( x ) y x j = 0 in Ω × ( 0 , T ) , when the control action is of Dirichlet-Neumann form and Ω is a bounded domain in R n . The result is obtained by applying the HUM (Hilbert Uniqueness Method) due to J. L. Lions.

How to cite

top

Cavalcanti, M. M.. "Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients." Archivum Mathematicum 035.1 (1999): 29-57. <http://eudml.org/doc/248369>.

@article{Cavalcanti1999,
abstract = {In this paper we study the boundary exact controllability for the equation \[ \frac\{\partial \}\{\partial t\}\left(\alpha (t)\{\{\partial y\}\over \{ \partial t\}\}\right)-\sum \_\{j=1\}^n\{\{\partial \}\over \{\partial x\_j\}\}\left(\beta (t)a(x)\{\{\partial y\}\over \{\partial x\_j\}\}\right)=0\;\;\;\hbox\{in\}\;\; \Omega \times (0,T)\,, \] when the control action is of Dirichlet-Neumann form and $\Omega $ is a bounded domain in $\{R\}^n$. The result is obtained by applying the HUM (Hilbert Uniqueness Method) due to J. L. Lions.},
author = {Cavalcanti, M. M.},
journal = {Archivum Mathematicum},
keywords = {wave equation; boundary value problem; exact controllability; Dirichlet-Neumann condition; wave equation; boundary value problem; exact controllability; Dirichlet-Neumann condition},
language = {eng},
number = {1},
pages = {29-57},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients},
url = {http://eudml.org/doc/248369},
volume = {035},
year = {1999},
}

TY - JOUR
AU - Cavalcanti, M. M.
TI - Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients
JO - Archivum Mathematicum
PY - 1999
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 035
IS - 1
SP - 29
EP - 57
AB - In this paper we study the boundary exact controllability for the equation \[ \frac{\partial }{\partial t}\left(\alpha (t){{\partial y}\over { \partial t}}\right)-\sum _{j=1}^n{{\partial }\over {\partial x_j}}\left(\beta (t)a(x){{\partial y}\over {\partial x_j}}\right)=0\;\;\;\hbox{in}\;\; \Omega \times (0,T)\,, \] when the control action is of Dirichlet-Neumann form and $\Omega $ is a bounded domain in ${R}^n$. The result is obtained by applying the HUM (Hilbert Uniqueness Method) due to J. L. Lions.
LA - eng
KW - wave equation; boundary value problem; exact controllability; Dirichlet-Neumann condition; wave equation; boundary value problem; exact controllability; Dirichlet-Neumann condition
UR - http://eudml.org/doc/248369
ER -

References

top
  1. Bardos C., Cheng C., Control and stabilization for the wave equation, part III : domain with moving boundary, Siam J. Control and Optim., 19 (1981), 123-138. (1981) MR0603085
  2. Bardos C., Lebeau G., Rauch J., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, Siam J. Control and Optim., 30, N.5 (1992), 1024-1065. (1992) Zbl0786.93009MR1178650
  3. Cioranescu D., Donato P., Zuazua E., Exact Boundary Controllability for the wave equation in domains with small holes, J. Math. Pures Appl. 71 (1992), 343-357. (1992) Zbl0843.35009MR1176016
  4. Coron J. M., Contrôlabilité exacte frontière de l’ équacion d’ Euler des fluides parfais incompressibles bidimensionnels, C.R.A.S. Paris, 317 (1993) S.I, 271-276. (1993) MR1233425
  5. Fuentes Apolaya R., Exact Controllability for temporally wave equation, Portugaliae Math., (1994), 475-488. (1994) MR1313160
  6. Grisvard P., Contrôlabilité exacte des solutions de l’équacion des ondes en présence de singularités, J. Math. pure et appl., 68 (1989), 215-259. (1989) MR1010769
  7. Komornik V., Contrôlabilité exacte en un temps minimal, C.R.A.S. Paris, 304 (1987), 223-235. (1987) Zbl0611.49027MR0883479
  8. Komornik V., Exact Controllability in short time for wave equation, Ann. Inst. Henri Poincaré, 6 (1989), 153-164. (1989) MR0991876
  9. Lagnese J., Control of wave processes with distributed controls supported on a subregion, Siam J. Control and Optmin. 21 (1983), 68-85. (1983) Zbl0512.93014MR0688440
  10. Lagnese J., Boundary Patch control of the wave equation in some non-star complemeted regions, J. Math. Anal. 77 (1980) 364-380. (1980) MR0593220
  11. Lagnese J., Boundary Value Control of a Class of Hyperbolic Equations in a General Region, Siam J. Control and Optim., 15, N.6 (1977), 973-983. (1977) Zbl0375.93029MR0477480
  12. Lagnese J., Lions J. L., Modelling, Analysis and Exact Controllability of Thin Plates, RMA Collection, N.6, Masson, Paris, (1988). (1988) MR0953313
  13. Lasiecka I., Triggiani R., Exact Controllability for the wave equation with Neumann boundary Control, Appl. Math. Optim. 19 (1989), 243-290. (1989) MR0974187
  14. Lions J. L., Controlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués, Tome 1, Masson, Paris, (1988). (1988) MR0953547

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.