Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients
Archivum Mathematicum (1999)
- Volume: 035, Issue: 1, page 29-57
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topCavalcanti, M. M.. "Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients." Archivum Mathematicum 035.1 (1999): 29-57. <http://eudml.org/doc/248369>.
@article{Cavalcanti1999,
abstract = {In this paper we study the boundary exact controllability for the equation \[ \frac\{\partial \}\{\partial t\}\left(\alpha (t)\{\{\partial y\}\over \{ \partial t\}\}\right)-\sum \_\{j=1\}^n\{\{\partial \}\over \{\partial x\_j\}\}\left(\beta (t)a(x)\{\{\partial y\}\over \{\partial x\_j\}\}\right)=0\;\;\;\hbox\{in\}\;\; \Omega \times (0,T)\,, \]
when the control action is of Dirichlet-Neumann form and $\Omega $ is a bounded domain in $\{R\}^n$. The result is obtained by applying the HUM (Hilbert Uniqueness Method) due to J. L. Lions.},
author = {Cavalcanti, M. M.},
journal = {Archivum Mathematicum},
keywords = {wave equation; boundary value problem; exact controllability; Dirichlet-Neumann condition; wave equation; boundary value problem; exact controllability; Dirichlet-Neumann condition},
language = {eng},
number = {1},
pages = {29-57},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients},
url = {http://eudml.org/doc/248369},
volume = {035},
year = {1999},
}
TY - JOUR
AU - Cavalcanti, M. M.
TI - Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients
JO - Archivum Mathematicum
PY - 1999
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 035
IS - 1
SP - 29
EP - 57
AB - In this paper we study the boundary exact controllability for the equation \[ \frac{\partial }{\partial t}\left(\alpha (t){{\partial y}\over { \partial t}}\right)-\sum _{j=1}^n{{\partial }\over {\partial x_j}}\left(\beta (t)a(x){{\partial y}\over {\partial x_j}}\right)=0\;\;\;\hbox{in}\;\; \Omega \times (0,T)\,, \]
when the control action is of Dirichlet-Neumann form and $\Omega $ is a bounded domain in ${R}^n$. The result is obtained by applying the HUM (Hilbert Uniqueness Method) due to J. L. Lions.
LA - eng
KW - wave equation; boundary value problem; exact controllability; Dirichlet-Neumann condition; wave equation; boundary value problem; exact controllability; Dirichlet-Neumann condition
UR - http://eudml.org/doc/248369
ER -
References
top- Bardos C., Cheng C., Control and stabilization for the wave equation, part III : domain with moving boundary, Siam J. Control and Optim., 19 (1981), 123-138. (1981) MR0603085
- Bardos C., Lebeau G., Rauch J., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, Siam J. Control and Optim., 30, N.5 (1992), 1024-1065. (1992) Zbl0786.93009MR1178650
- Cioranescu D., Donato P., Zuazua E., Exact Boundary Controllability for the wave equation in domains with small holes, J. Math. Pures Appl. 71 (1992), 343-357. (1992) Zbl0843.35009MR1176016
- Coron J. M., Contrôlabilité exacte frontière de l’ équacion d’ Euler des fluides parfais incompressibles bidimensionnels, C.R.A.S. Paris, 317 (1993) S.I, 271-276. (1993) MR1233425
- Fuentes Apolaya R., Exact Controllability for temporally wave equation, Portugaliae Math., (1994), 475-488. (1994) MR1313160
- Grisvard P., Contrôlabilité exacte des solutions de l’équacion des ondes en présence de singularités, J. Math. pure et appl., 68 (1989), 215-259. (1989) MR1010769
- Komornik V., Contrôlabilité exacte en un temps minimal, C.R.A.S. Paris, 304 (1987), 223-235. (1987) Zbl0611.49027MR0883479
- Komornik V., Exact Controllability in short time for wave equation, Ann. Inst. Henri Poincaré, 6 (1989), 153-164. (1989) MR0991876
- Lagnese J., Control of wave processes with distributed controls supported on a subregion, Siam J. Control and Optmin. 21 (1983), 68-85. (1983) Zbl0512.93014MR0688440
- Lagnese J., Boundary Patch control of the wave equation in some non-star complemeted regions, J. Math. Anal. 77 (1980) 364-380. (1980) MR0593220
- Lagnese J., Boundary Value Control of a Class of Hyperbolic Equations in a General Region, Siam J. Control and Optim., 15, N.6 (1977), 973-983. (1977) Zbl0375.93029MR0477480
- Lagnese J., Lions J. L., Modelling, Analysis and Exact Controllability of Thin Plates, RMA Collection, N.6, Masson, Paris, (1988). (1988) MR0953313
- Lasiecka I., Triggiani R., Exact Controllability for the wave equation with Neumann boundary Control, Appl. Math. Optim. 19 (1989), 243-290. (1989) MR0974187
- Lions J. L., Controlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués, Tome 1, Masson, Paris, (1988). (1988) MR0953547
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.