Self-duality and pointwise Osserman manifolds

Dimitri V. Alekseevsky; Novica Blažić; Neda Bokan; Zoran Rakić

Archivum Mathematicum (1999)

  • Volume: 035, Issue: 3, page 193-201
  • ISSN: 0044-8753

Abstract

top
This paper is a contribution to the mathematical modelling of the hump effect. We present a mathematical study (existence, homogenization) of a Hamilton-Jacobi problem which represents the propagation of a front f lame in a striated media.

How to cite

top

Alekseevsky, Dimitri V., et al. "Self-duality and pointwise Osserman manifolds." Archivum Mathematicum 035.3 (1999): 193-201. <http://eudml.org/doc/248371>.

@article{Alekseevsky1999,
abstract = {This paper is a contribution to the mathematical modelling of the hump effect. We present a mathematical study (existence, homogenization) of a Hamilton-Jacobi problem which represents the propagation of a front f$ $lame in a striated media.},
author = {Alekseevsky, Dimitri V., Blažić, Novica, Bokan, Neda, Rakić, Zoran},
journal = {Archivum Mathematicum},
keywords = {Hump effect; striated media; homogenization; viscosity solution; self-dual manifolds; manifolds of neutral signature; Jacobi operator; Einstein manifolds},
language = {eng},
number = {3},
pages = {193-201},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Self-duality and pointwise Osserman manifolds},
url = {http://eudml.org/doc/248371},
volume = {035},
year = {1999},
}

TY - JOUR
AU - Alekseevsky, Dimitri V.
AU - Blažić, Novica
AU - Bokan, Neda
AU - Rakić, Zoran
TI - Self-duality and pointwise Osserman manifolds
JO - Archivum Mathematicum
PY - 1999
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 035
IS - 3
SP - 193
EP - 201
AB - This paper is a contribution to the mathematical modelling of the hump effect. We present a mathematical study (existence, homogenization) of a Hamilton-Jacobi problem which represents the propagation of a front f$ $lame in a striated media.
LA - eng
KW - Hump effect; striated media; homogenization; viscosity solution; self-dual manifolds; manifolds of neutral signature; Jacobi operator; Einstein manifolds
UR - http://eudml.org/doc/248371
ER -

References

top
  1. Barles G., Solutions de viscosité des équations d’Hamilton-Jacobi du premier ordre et applications, Faculté des Sciences et Techniques; Parc de Grandmont Tours-France. 
  2. Brauner C.M., Edarh-Bossou T.K., Namah G., Schmidt-Lainé C., Pré-étude sur l’homogénéisation de l’effet “Hump”, Rapport, Univ Bordeaux I, Ens-Lyon, Juin 1990. (1990) 
  3. Crandall M.G., Evans L.C., Lions P.L., Some properties of viscosity solutions of Hamilton-Jacobi equations, AMS 282(1984), No 2. (1984) Zbl0543.35011MR0732102
  4. Crandall M.G., Ishii H., Lions P.L., User’s guide to viscosity solutions of second order partial differential equation, AMS 27(1992), No 1, 1-63. (1992) MR1118699
  5. Crandall M.G., Lions P.L., Viscosity solutions of Hamilton-Jacobi equations, AMS 277(1983), No 1. (1983) Zbl0599.35024MR0690039
  6. Edarh-Bossou T.K., Modélisation numérique de la combustion d’un bloc de propergol solide - effet hump, DEA, Univ Claude-Bernard Lyon I-ENS Lyon, 1989. (1989) 
  7. Edarh-Bossou T.K., Etude de la propagation d’un front de f lamme dans un milieu strié, thèse de Doctorat, Univ. Claude-Bernard Lyon I-ENS Lyon, 1993. (1993) 
  8. Lions P.D., Generalized solutions of Hamilton-Jacobi equations, Pitman, London 1982. (1982) Zbl0497.35001
  9. Lions P.D., Papanicolau G., Varadan S.R.S., Homogenization of Hamilton-Jacobi equation, Preprint, Univ. Paris Dauphine, 1987. (1987) 
  10. Namah G., Etude de deux modèles de combustion en phase gazeuse et en milieu strié, thèse de Doctorat, Univ. Bordeaux I, 1990. (1990) 
  11. Ribereau D., Génération d’un logiciel de simulation de la combustion d’un bloc de propergol solide, thèse de Doctorat, Univ. Bordeaux I, 1988. (1988) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.