Lattice points in super spheres

Ekkehard Krätzel

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 2, page 373-391
  • ISSN: 0010-2628

Abstract

top
In this article we consider the number R k , p ( x ) of lattice points in p -dimensional super spheres with even power k 4 . We give an asymptotic expansion of the d -fold anti-derivative of R k , p ( x ) for sufficiently large d . From this we deduce a new estimation for the error term in the asymptotic representation of R k , p ( x ) for p < k < 2 p - 4 .

How to cite

top

Krätzel, Ekkehard. "Lattice points in super spheres." Commentationes Mathematicae Universitatis Carolinae 40.2 (1999): 373-391. <http://eudml.org/doc/248389>.

@article{Krätzel1999,
abstract = {In this article we consider the number $R_\{k,p\}(x)$ of lattice points in $p$-dimensional super spheres with even power $k \ge 4$. We give an asymptotic expansion of the $d$-fold anti-derivative of $R_\{k,p\}(x)$ for sufficiently large $d$. From this we deduce a new estimation for the error term in the asymptotic representation of $R_\{k,p\}(x)$ for $p<k<2p-4$.},
author = {Krätzel, Ekkehard},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {lattice points; exponential sums; lattice points; exponential sums; super spheres},
language = {eng},
number = {2},
pages = {373-391},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Lattice points in super spheres},
url = {http://eudml.org/doc/248389},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Krätzel, Ekkehard
TI - Lattice points in super spheres
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 2
SP - 373
EP - 391
AB - In this article we consider the number $R_{k,p}(x)$ of lattice points in $p$-dimensional super spheres with even power $k \ge 4$. We give an asymptotic expansion of the $d$-fold anti-derivative of $R_{k,p}(x)$ for sufficiently large $d$. From this we deduce a new estimation for the error term in the asymptotic representation of $R_{k,p}(x)$ for $p<k<2p-4$.
LA - eng
KW - lattice points; exponential sums; lattice points; exponential sums; super spheres
UR - http://eudml.org/doc/248389
ER -

References

top
  1. Copson E.T., Asymptotic Expansions, Cambridge University Press, Cambridge, 1965. Zbl1096.41001MR0168979
  2. Hoeppner S., Krätzel E., The number of lattice points inside and on the surface | t 1 | k + | t 2 | k + ... + | t n | k = x , Math. Nachr. 163 (1993), 257-268. (1993) MR1235070
  3. Krätzel E., Lattice Points, DVW, Berlin, 1988 and Kluwer, Dordrecht-Boston-London, 1988. MR0998378
  4. Kuba G., On the sums of two k-th powers of numbers in residue classes II, Abh. Math. Sem. Hamburg 63 (1993), 87-95. (1993) MR1227866
  5. Müller W., Nowak W.G., Lattice points in planar domains: Applications of Huxley's Discrete Hardy-Littlewood-Method, Numbertheoretic analysis, Vienna 1988-1989, Springer Lecture Notes 1452 (eds. E. Hlawka and R.F. Tichy) (1990), pp.139-164. 
  6. Schmidt-Röh R., Ein additives Gitterpunktproblem, Doctoral Thesis, FSU Jena, 1989. 
  7. Schnabel L., Über eine Verallgemeinerung des Kreisproblems, Wiss. Z. FSU Jena, Math.-Naturwiss. R. 31 (1982), 667-681. (1982) Zbl0497.10038MR0682557
  8. Wild R.E., On the number of lattice points in x t + y t = n t / 2 , Pacific J. Math. 8 (1958), 929-940. (1958) MR0112883

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.