Remarks on fixed points of rotative Lipschitzian mappings
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 3, page 495-510
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGórnicki, Jarosław. "Remarks on fixed points of rotative Lipschitzian mappings." Commentationes Mathematicae Universitatis Carolinae 40.3 (1999): 495-510. <http://eudml.org/doc/248390>.
@article{Górnicki1999,
abstract = {Let $C$ be a nonempty closed convex subset of a Banach space $E$ and $T:C\rightarrow C$ a $k$-Lipschitzian rotative mapping, i.eṡuch that $\Vert Tx-Ty\Vert \le k\cdot \Vert x-y\Vert $ and $\Vert T^n x-x\Vert \le a\cdot \Vert x-Tx\Vert $ for some real $k$, $a$ and an integer $n>a$. The paper concerns the existence of a fixed point of $T$ in $p$-uniformly convex Banach spaces, depending on $k$, $a$ and $n=2,3$.},
author = {Górnicki, Jarosław},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {rotative mappings; fixed points; rotative mappings; fixed points; Banach spaces},
language = {eng},
number = {3},
pages = {495-510},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on fixed points of rotative Lipschitzian mappings},
url = {http://eudml.org/doc/248390},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Górnicki, Jarosław
TI - Remarks on fixed points of rotative Lipschitzian mappings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 3
SP - 495
EP - 510
AB - Let $C$ be a nonempty closed convex subset of a Banach space $E$ and $T:C\rightarrow C$ a $k$-Lipschitzian rotative mapping, i.eṡuch that $\Vert Tx-Ty\Vert \le k\cdot \Vert x-y\Vert $ and $\Vert T^n x-x\Vert \le a\cdot \Vert x-Tx\Vert $ for some real $k$, $a$ and an integer $n>a$. The paper concerns the existence of a fixed point of $T$ in $p$-uniformly convex Banach spaces, depending on $k$, $a$ and $n=2,3$.
LA - eng
KW - rotative mappings; fixed points; rotative mappings; fixed points; Banach spaces
UR - http://eudml.org/doc/248390
ER -
References
top- Barros-Neto J., An Introduction to the Theory of Distributions, M. Dekker, New York, 1973. Zbl0512.46040MR0461128
- Dunford N., Linear Operators, vol. I, Interscience, New York, 1958. Zbl0635.47003
- Duren W.L., Theory of Spaces, Academic Press, New York, 1970. MR0268655
- Goebel K., Convexity of balls and fixed point theorems for mappings with nonexpansive square, Compositio Math. 22 (1970), 269-274. (1970) Zbl0202.12802MR0273477
- Goebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics 28, Cambridge University Press, London, 1990. MR1074005
- Goebel K., Koter M., A remark on nonexpansive mappings, Canad. Math. Bull. 24 (1981), 113-115. (1981) Zbl0461.47027MR0611220
- Goebel K., Koter M., Fixed points of rotative Lipschitzian mappings, Rend. Sem. Mat. Fis. di Milano 51 (1981), 145-156. (1981) Zbl0535.47031MR0708040
- Goebel K., Złotkiewicz E., Some fixed point theorems in Banach spaces, Colloquium Math. 23 (1971), 103-106. (1971) MR0303367
- Górnicki J., Fixed points of involutions, Math. Japonica 43 (1996), 151-155. (1996) MR1373993
- Górnicki J., Rhoades B.E., A general fixed point theorem for involutions, Indian J. Pure Appl. Math. 27{(1)} (1996), 13-23. (1996) MR1374884
- Kirk W.A., A fixed point theorem for mappings with a nonexpansive iterate, Proc. Amer. Math. Soc. 29 (1971), 294-298. (1971) Zbl0213.41303MR0284887
- Komorowski T., Selected topics on Lipschitzian mappings (in Polish), Thesis, Univ. M. Curie-Sklodowskiej, Lublin, 1987.
- Koter M., Fixed points of Lipschitzian -rotative mappings, Bolletino U.M.I., Ser. VI, 5 (1986), 321-339. (1986) Zbl0634.47053MR0897203
- Lim T.C., Xu H.K., Xu Z.B., An inequality and its applications to fixed point theory and approximation theory, in: Progress in Approximation Theory (P. Nevai and A. Pinkus, eds.), Academic Press, New York, 1991, pp.609-624. Zbl0801.46012MR1114800
- Lindenstrauss J., Tzafriri L., Classical Banach Spaces, II - Function Spaces, Springer-Verlag, Berlin, 1979. Zbl0403.46022MR0540367
- Linhart J., Fixpunkte von Involutionen -ter Ordnung, Österich. Acad. Wiss. Math.-Natur. kl. S-B 180 (1973), 89-93. (1973) MR0303369
- Prus B., Smarzewski R., Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21. (1987) Zbl0617.41046MR0869515
- Smarzewski R., Strongly unique minimization of functionals in Banach spaces with applications to theory of approximation and fixed points, J. Math. Anal. Appl. 115 (1986), 155-172. (1986) Zbl0593.49004MR0835591
- Smarzewski R., Strongly unique best approximation in Banach spaces, II, J. Approx. Theory 51 (1987), 202-217. (1987) Zbl0657.41022MR0913618
- Smarzewski R., On the inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146-150. (1990) MR1059576
- Xu H.K., Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138. (1991) Zbl0757.46033MR1111623
- Zălinescu C., On uniformly convex function, J. Math. Anal. Appl. 95 (1983), 344-374. (1983) MR0716088
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.