Remarks on fixed points of rotative Lipschitzian mappings

Jarosław Górnicki

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 3, page 495-510
  • ISSN: 0010-2628

Abstract

top
Let C be a nonempty closed convex subset of a Banach space E and T : C C a k -Lipschitzian rotative mapping, i.eṡuch that T x - T y k · x - y and T n x - x a · x - T x for some real k , a and an integer n > a . The paper concerns the existence of a fixed point of T in p -uniformly convex Banach spaces, depending on k , a and n = 2 , 3 .

How to cite

top

Górnicki, Jarosław. "Remarks on fixed points of rotative Lipschitzian mappings." Commentationes Mathematicae Universitatis Carolinae 40.3 (1999): 495-510. <http://eudml.org/doc/248390>.

@article{Górnicki1999,
abstract = {Let $C$ be a nonempty closed convex subset of a Banach space $E$ and $T:C\rightarrow C$ a $k$-Lipschitzian rotative mapping, i.eṡuch that $\Vert Tx-Ty\Vert \le k\cdot \Vert x-y\Vert $ and $\Vert T^n x-x\Vert \le a\cdot \Vert x-Tx\Vert $ for some real $k$, $a$ and an integer $n>a$. The paper concerns the existence of a fixed point of $T$ in $p$-uniformly convex Banach spaces, depending on $k$, $a$ and $n=2,3$.},
author = {Górnicki, Jarosław},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {rotative mappings; fixed points; rotative mappings; fixed points; Banach spaces},
language = {eng},
number = {3},
pages = {495-510},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on fixed points of rotative Lipschitzian mappings},
url = {http://eudml.org/doc/248390},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Górnicki, Jarosław
TI - Remarks on fixed points of rotative Lipschitzian mappings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 3
SP - 495
EP - 510
AB - Let $C$ be a nonempty closed convex subset of a Banach space $E$ and $T:C\rightarrow C$ a $k$-Lipschitzian rotative mapping, i.eṡuch that $\Vert Tx-Ty\Vert \le k\cdot \Vert x-y\Vert $ and $\Vert T^n x-x\Vert \le a\cdot \Vert x-Tx\Vert $ for some real $k$, $a$ and an integer $n>a$. The paper concerns the existence of a fixed point of $T$ in $p$-uniformly convex Banach spaces, depending on $k$, $a$ and $n=2,3$.
LA - eng
KW - rotative mappings; fixed points; rotative mappings; fixed points; Banach spaces
UR - http://eudml.org/doc/248390
ER -

References

top
  1. Barros-Neto J., An Introduction to the Theory of Distributions, M. Dekker, New York, 1973. Zbl0512.46040MR0461128
  2. Dunford N., Linear Operators, vol. I, Interscience, New York, 1958. Zbl0635.47003
  3. Duren W.L., Theory of H p Spaces, Academic Press, New York, 1970. MR0268655
  4. Goebel K., Convexity of balls and fixed point theorems for mappings with nonexpansive square, Compositio Math. 22 (1970), 269-274. (1970) Zbl0202.12802MR0273477
  5. Goebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics 28, Cambridge University Press, London, 1990. MR1074005
  6. Goebel K., Koter M., A remark on nonexpansive mappings, Canad. Math. Bull. 24 (1981), 113-115. (1981) Zbl0461.47027MR0611220
  7. Goebel K., Koter M., Fixed points of rotative Lipschitzian mappings, Rend. Sem. Mat. Fis. di Milano 51 (1981), 145-156. (1981) Zbl0535.47031MR0708040
  8. Goebel K., Złotkiewicz E., Some fixed point theorems in Banach spaces, Colloquium Math. 23 (1971), 103-106. (1971) MR0303367
  9. Górnicki J., Fixed points of involutions, Math. Japonica 43 (1996), 151-155. (1996) MR1373993
  10. Górnicki J., Rhoades B.E., A general fixed point theorem for involutions, Indian J. Pure Appl. Math. 27{(1)} (1996), 13-23. (1996) MR1374884
  11. Kirk W.A., A fixed point theorem for mappings with a nonexpansive iterate, Proc. Amer. Math. Soc. 29 (1971), 294-298. (1971) Zbl0213.41303MR0284887
  12. Komorowski T., Selected topics on Lipschitzian mappings (in Polish), Thesis, Univ. M. Curie-Sklodowskiej, Lublin, 1987. 
  13. Koter M., Fixed points of Lipschitzian 2 -rotative mappings, Bolletino U.M.I., Ser. VI, 5 (1986), 321-339. (1986) Zbl0634.47053MR0897203
  14. Lim T.C., Xu H.K., Xu Z.B., An L p inequality and its applications to fixed point theory and approximation theory, in: Progress in Approximation Theory (P. Nevai and A. Pinkus, eds.), Academic Press, New York, 1991, pp.609-624. Zbl0801.46012MR1114800
  15. Lindenstrauss J., Tzafriri L., Classical Banach Spaces, II - Function Spaces, Springer-Verlag, Berlin, 1979. Zbl0403.46022MR0540367
  16. Linhart J., Fixpunkte von Involutionen n -ter Ordnung, Österich. Acad. Wiss. Math.-Natur. kl. S-B 180 (1973), 89-93. (1973) MR0303369
  17. Prus B., Smarzewski R., Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21. (1987) Zbl0617.41046MR0869515
  18. Smarzewski R., Strongly unique minimization of functionals in Banach spaces with applications to theory of approximation and fixed points, J. Math. Anal. Appl. 115 (1986), 155-172. (1986) Zbl0593.49004MR0835591
  19. Smarzewski R., Strongly unique best approximation in Banach spaces, II, J. Approx. Theory 51 (1987), 202-217. (1987) Zbl0657.41022MR0913618
  20. Smarzewski R., On the inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146-150. (1990) MR1059576
  21. Xu H.K., Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138. (1991) Zbl0757.46033MR1111623
  22. Zălinescu C., On uniformly convex function, J. Math. Anal. Appl. 95 (1983), 344-374. (1983) MR0716088

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.