On a problem of Nogura about the product of Fréchet-Urysohn -spaces
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 3, page 537-549
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCostantini, Camillo. "On a problem of Nogura about the product of Fréchet-Urysohn $\langle \alpha _4\rangle $-spaces." Commentationes Mathematicae Universitatis Carolinae 40.3 (1999): 537-549. <http://eudml.org/doc/248392>.
@article{Costantini1999,
abstract = {Assuming Martin’s Axiom, we provide an example of two Fréchet-Urysohn $\langle \alpha _4\rangle $-spaces, whose product is a non-Fréchet-Urysohn $\langle \alpha _4\rangle $-space. This gives a consistent negative answer to a question raised by T. Nogura.},
author = {Costantini, Camillo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fréchet-Urysohn space; $\langle \alpha _4\rangle $-space; Martin’s Axiom; almost disjoint functions; double iterated power; Fréchet-Uryson space; -space; Martin's Axiom},
language = {eng},
number = {3},
pages = {537-549},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a problem of Nogura about the product of Fréchet-Urysohn $\langle \alpha _4\rangle $-spaces},
url = {http://eudml.org/doc/248392},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Costantini, Camillo
TI - On a problem of Nogura about the product of Fréchet-Urysohn $\langle \alpha _4\rangle $-spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 3
SP - 537
EP - 549
AB - Assuming Martin’s Axiom, we provide an example of two Fréchet-Urysohn $\langle \alpha _4\rangle $-spaces, whose product is a non-Fréchet-Urysohn $\langle \alpha _4\rangle $-space. This gives a consistent negative answer to a question raised by T. Nogura.
LA - eng
KW - Fréchet-Urysohn space; $\langle \alpha _4\rangle $-space; Martin’s Axiom; almost disjoint functions; double iterated power; Fréchet-Uryson space; -space; Martin's Axiom
UR - http://eudml.org/doc/248392
ER -
References
top- Arhangel'skii A.V., The frequency spectrum of a topological space and the classification of spaces, Sov. Math. Dokl. 13 (1972), 265-268. (1972) MR0394575
- Arhangel'skii A.V., The frequency spectrum of a topological space and the product operation, Transl. Moscow Math. Soc., Issue 2 (1981), 163-200. (1981)
- Costantini C., Simon P., An , not Fréchet product of Fréchet spaces, Topology Appl., to appear. Zbl0959.54006MR1783423
- Dow A., Two classes of Fréchet-Urysohn spaces, Proc. Amer. Math. Soc. 108 (1990), 241-247. (1990) Zbl0675.54029MR0975638
- Engelking R., General Topology. Revised and Completed Ed., Heldermann, Berlin, 1989. MR1039321
- Kunen K., Set Theory. An Introduction to Independence Proofs, Nort-Holland, Amsterdam, 1980. Zbl0534.03026MR0597342
- Nogura T., The product of -spaces Topology Appl., 21 (1985), 251-259. (1985) MR0812643
- Olson R.C., Bi-quotient maps, countably bi-sequential spaces, and related topics, Gen. Topology Appl. 4 (1974), 1-28. (1974) Zbl0278.54008MR0365463
- Simon P., A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolinae 21 (1980), 749-753. (1980) Zbl0466.54022MR0597764
- Simon P., A hedgehog in a product, Acta Univ. Carolin.-Math. Phys., to appear. Zbl1007.54023MR1696588
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.