On a problem of Nogura about the product of Fréchet-Urysohn α 4 -spaces

Camillo Costantini

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 3, page 537-549
  • ISSN: 0010-2628

Abstract

top
Assuming Martin’s Axiom, we provide an example of two Fréchet-Urysohn α 4 -spaces, whose product is a non-Fréchet-Urysohn α 4 -space. This gives a consistent negative answer to a question raised by T. Nogura.

How to cite

top

Costantini, Camillo. "On a problem of Nogura about the product of Fréchet-Urysohn $\langle \alpha _4\rangle $-spaces." Commentationes Mathematicae Universitatis Carolinae 40.3 (1999): 537-549. <http://eudml.org/doc/248392>.

@article{Costantini1999,
abstract = {Assuming Martin’s Axiom, we provide an example of two Fréchet-Urysohn $\langle \alpha _4\rangle $-spaces, whose product is a non-Fréchet-Urysohn $\langle \alpha _4\rangle $-space. This gives a consistent negative answer to a question raised by T. Nogura.},
author = {Costantini, Camillo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fréchet-Urysohn space; $\langle \alpha _4\rangle $-space; Martin’s Axiom; almost disjoint functions; double iterated power; Fréchet-Uryson space; -space; Martin's Axiom},
language = {eng},
number = {3},
pages = {537-549},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a problem of Nogura about the product of Fréchet-Urysohn $\langle \alpha _4\rangle $-spaces},
url = {http://eudml.org/doc/248392},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Costantini, Camillo
TI - On a problem of Nogura about the product of Fréchet-Urysohn $\langle \alpha _4\rangle $-spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 3
SP - 537
EP - 549
AB - Assuming Martin’s Axiom, we provide an example of two Fréchet-Urysohn $\langle \alpha _4\rangle $-spaces, whose product is a non-Fréchet-Urysohn $\langle \alpha _4\rangle $-space. This gives a consistent negative answer to a question raised by T. Nogura.
LA - eng
KW - Fréchet-Urysohn space; $\langle \alpha _4\rangle $-space; Martin’s Axiom; almost disjoint functions; double iterated power; Fréchet-Uryson space; -space; Martin's Axiom
UR - http://eudml.org/doc/248392
ER -

References

top
  1. Arhangel'skii A.V., The frequency spectrum of a topological space and the classification of spaces, Sov. Math. Dokl. 13 (1972), 265-268. (1972) MR0394575
  2. Arhangel'skii A.V., The frequency spectrum of a topological space and the product operation, Transl. Moscow Math. Soc., Issue 2 (1981), 163-200. (1981) 
  3. Costantini C., Simon P., An α 4 , not Fréchet product of α 4 Fréchet spaces, Topology Appl., to appear. Zbl0959.54006MR1783423
  4. Dow A., Two classes of Fréchet-Urysohn spaces, Proc. Amer. Math. Soc. 108 (1990), 241-247. (1990) Zbl0675.54029MR0975638
  5. Engelking R., General Topology. Revised and Completed Ed., Heldermann, Berlin, 1989. MR1039321
  6. Kunen K., Set Theory. An Introduction to Independence Proofs, Nort-Holland, Amsterdam, 1980. Zbl0534.03026MR0597342
  7. Nogura T., The product of α i -spaces Topology Appl., 21 (1985), 251-259. (1985) MR0812643
  8. Olson R.C., Bi-quotient maps, countably bi-sequential spaces, and related topics, Gen. Topology Appl. 4 (1974), 1-28. (1974) Zbl0278.54008MR0365463
  9. Simon P., A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolinae 21 (1980), 749-753. (1980) Zbl0466.54022MR0597764
  10. Simon P., A hedgehog in a product, Acta Univ. Carolin.-Math. Phys., to appear. Zbl1007.54023MR1696588

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.