On a nonlinear elliptic system: resonance and bifurcation cases

Mario Zuluaga Uribe

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 4, page 701-711
  • ISSN: 0010-2628

Abstract

top
In this paper we consider an elliptic system at resonance and bifurcation type with zero Dirichlet condition. We use a Lyapunov-Schmidt approach and we will give applications to Biharmonic Equations.

How to cite

top

Zuluaga Uribe, Mario. "On a nonlinear elliptic system: resonance and bifurcation cases." Commentationes Mathematicae Universitatis Carolinae 40.4 (1999): 701-711. <http://eudml.org/doc/248431>.

@article{ZuluagaUribe1999,
abstract = {In this paper we consider an elliptic system at resonance and bifurcation type with zero Dirichlet condition. We use a Lyapunov-Schmidt approach and we will give applications to Biharmonic Equations.},
author = {Zuluaga Uribe, Mario},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {elliptic system at resonance; bifurcation points; Lyapunov-Schmidt method; elliptic systems at resonance; bifurcation points; Lyapunov-Schmidt method},
language = {eng},
number = {4},
pages = {701-711},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a nonlinear elliptic system: resonance and bifurcation cases},
url = {http://eudml.org/doc/248431},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Zuluaga Uribe, Mario
TI - On a nonlinear elliptic system: resonance and bifurcation cases
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 4
SP - 701
EP - 711
AB - In this paper we consider an elliptic system at resonance and bifurcation type with zero Dirichlet condition. We use a Lyapunov-Schmidt approach and we will give applications to Biharmonic Equations.
LA - eng
KW - elliptic system at resonance; bifurcation points; Lyapunov-Schmidt method; elliptic systems at resonance; bifurcation points; Lyapunov-Schmidt method
UR - http://eudml.org/doc/248431
ER -

References

top
  1. Ahmad S., Lazer A., Paul J., Elementary critical point theory and perturbation of elliptic boundary value problems at resonance, Indiana Univ. Math. J. 25 (1976), 933-944. (1976) MR0427825
  2. Ambrosetti A., Mancini G., Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. The case of the simple eigenvalue, J. Diff. Equations 28 (1978), 220-245. (1978) Zbl0393.35032MR0492839
  3. Anane A., Etude des valeurs propers et la resonance pour le operateur P-Laplacian, Ph.D. Thesis, Univ. Bruxelles, 1988. 
  4. Bartolo P., Benci V., Fortunato D., Abstract critical point Theorems and applications to some nonlinear problems with strong resonance, Nonlinear Analysis T.M.A. 7 9 (1983), 981-1012. (1983) Zbl0522.58012MR0713209
  5. Berestycki H., Defigueiredo D., Double resonance in semilinear elliptic problems, Comm. Partial Diff. Equations 6 91-120 (1981). (1981) MR0597753
  6. Brown K.J., Spatially inhomogeneous steady-state solutions for systems of equations describing interacting populations, J. Math. Anal. Appl. 95 (1983), 251-264. (1983) Zbl0518.92017MR0710432
  7. Capozzi A., Lupo D., Solimini S., On the existence of a nontrivial solution to nonlinear problem at resonance, Nonlinear Analysis T.M.A. 13 2 151-163 (1989). (1989) MR0979038
  8. Cesari L., Kannan R., Qualitative study of a class of nonlinear boundary value problems at resonance, J. Diff. Equations 56 63-81 (1985). (1985) Zbl0554.34009MR0772121
  9. Chiappinelli R., Mawhin J., Nugari R., Bifurcation from infinity and multiple solutions for some Dirichlet problems with unbounded nonlinearities, Nonlinear Analysis T.M.A, in press. Zbl0780.35038
  10. Chow S., Hale J., Methods of Bifurcation Theory, Springer Verlag (1982). (1982) Zbl0487.47039MR0660633
  11. Costa D., Magalh aes, A variational approach to subquadratic perturbations of elliptic systems, J. Diff. Equations 111 1 103-122 (1994). (1994) MR1280617
  12. De Figueiredo D., Chiappinelli R., Bifurcation from infinity and multiple solutions for an elliptic system, Differential and Integral Equations 6 4 (1993), 757-771. (1993) Zbl0784.35008MR1222299
  13. De Figueiredo D., Gossez J., Resonance below the first eigenvalue for a semilinear elliptic problem, Math. Ann. 281 589-610 (1988). (1988) MR0958261
  14. De Figueiredo D., Mitidieri E., A maximum principle for an elliptic system and applications to semilinear problems, Siam. J. Math. Anal. 17 (1986), 836-849. (1986) Zbl0608.35022MR0846392
  15. Gossez J., Some nonlinear differential equations at resonance at first eigenvalue, Conf. Sem. Mat. Univ Bari 167 355-389 (1979). (1979) 
  16. Hernández J., Maximum Principles and Decoupling for Positive Solutions of Reaction-Diffusion Systems, Oxford University Press, K.J. Brown and A. Lacey eds, 1990, pp.199-224. MR1086647
  17. Iannacci R., Nkashama M., Nonlinear boundary value problems at resonance, Nonlinear Analysis T.M.A. 11 455-473 (1987). (1987) Zbl0676.35023MR0887655
  18. Iannacci R., Nkashama M., Nonlinear second order elliptic partial differential equations at resonance, Report 87-12, Memphis State University, 1987. Zbl0686.35045
  19. Krasnosels'kii M., Zabreico F., Geometrical Methods of Nonlinear Analysis, Springer Verlag (1984). (1984) MR0736839
  20. Landesman E., Lazer A., Nonlinear perturbation of elliptic boundary value problems at resonance, J. Math. Mech. 19 609-623 (1970). (1970) MR0267269
  21. Lazer A., McKenna P.J., On steady-state solutions of a system of reaction-diffusion equations from biology, Nonlinear Analysis T.M.A. 6 (1982), 523-530. (1982) Zbl0488.35039MR0664014
  22. Lupo D., Solimini S., A note on a resonance problem, Proc. Royal Soc. Edinburgh 102 A 1-7 (1986). (1986) Zbl0593.35036MR0837156
  23. Mawhin J., Bifurcation from infinity and nonlinear boundary value problems, in ordinary and partial differential equations, vol. II, Sleeman and Jarvis eds, Longman, Ifarlow, 1989, pp.119-129. MR1031727
  24. Mawhin J., Schmitt K., Landesman-Lazer type problems at an eigenvalue of odd multiplicity, Results in Math. 14 (1988), 138-146. (1988) Zbl0780.35043MR0956010
  25. Mawhin J., Schmitt K., Nonlinear eigenvalue problems with the parameter near resonance, Ann. Polon. Math. 51 (1990), 241-248. (1990) Zbl0724.34025MR1093994
  26. Omari P., Zanolin F., A note on nonlinear oscillations at resonance, Acta Math. Sinica 3 351-361 (1987). (1987) Zbl0648.34040MR0930765
  27. Rabinowitz P., Minimax methods in critical point theory with applications to differential equations, CBMS 65 Regional Conference Series in Math, A.M.S., 1986. Zbl0609.58002MR0845785
  28. Rothe F., Global existence of branches of stationary solutions for a system of reaction-diffusion equations from biology, Nonlinear Analysis T.M.A. 5 (1981), 487-498. (1981) Zbl0471.35031MR0613057
  29. Schechter M., Nonlinear elliptic boundary value problems at resonance, Nonlinear Analysis T.M.A. 14 10 889-903 (1990). (1990) Zbl0708.35033MR1055536
  30. Smoller J., Shock Waves and Reaction-Diffusion Equations, Springer-Verlag (1983). (1983) Zbl0508.35002MR0688146
  31. Solimini S., On the solvability of some elliptic partial differential equations with the linear part at resonance, J. Math. Anal. Appl. 117 138-152 (1986). (1986) Zbl0634.35030MR0843010
  32. Vargas C., Zuluaga M., On a nonlinear Dirichlet problem type at resonance and bifurcation, Partial Differential Equations Pitmann Research Notes in Math. Series 273, pp.248-252 (1992). (1992) Zbl0795.35035
  33. Vargas C., Zuluaga M., A nonlinear elliptic problem at resonance with a nonsimple eigenvalue, Nonlinear Analysis T.M.A. (1996), 711-721. (1996) Zbl0861.35030MR1399070
  34. Zuluaga M., A nonlinear elliptic system at resonance, Dynamic Systems and Applications 3 4 501-510 (1994). (1994) Zbl0811.35037MR1304129
  35. Zuluaga M., Nonzero solutions of a nonlinear elliptic system at resonance, Nonlinear Analysis T.M.A 31 3/4 445-454 (1996). (1996) MR1487555

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.