Arithmetical classification of the set of all provably recursive functions
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 4, page 631-634
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topŠvejdar, Vítězslav. "Arithmetical classification of the set of all provably recursive functions." Commentationes Mathematicae Universitatis Carolinae 40.4 (1999): 631-634. <http://eudml.org/doc/248443>.
@article{Švejdar1999,
abstract = {The set of all indices of all functions provably recursive in any reasonable theory $T$ is shown to be recursively isomorphic to $U\times \overline\{U\}$, where $U$ is $\Pi _2$-complete set.},
author = {Švejdar, Vítězslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {provable; recursive; complete; recursive; provable; complete},
language = {eng},
number = {4},
pages = {631-634},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Arithmetical classification of the set of all provably recursive functions},
url = {http://eudml.org/doc/248443},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Švejdar, Vítězslav
TI - Arithmetical classification of the set of all provably recursive functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 4
SP - 631
EP - 634
AB - The set of all indices of all functions provably recursive in any reasonable theory $T$ is shown to be recursively isomorphic to $U\times \overline{U}$, where $U$ is $\Pi _2$-complete set.
LA - eng
KW - provable; recursive; complete; recursive; provable; complete
UR - http://eudml.org/doc/248443
ER -
References
top- Buss S.R., Bounded Arithmetic, Bibliopolis, Napoli, 1986. Zbl1148.03038MR0880863
- Hájek P., Pudlák P., Metamathematics of First Order Arithmetic, Springer, 1993. MR1219738
- Hay L., Index sets universal for differences of arithmetic sets, Zeitschr. f. math. Logik und Grundlagen d. Math. 20 (1974), 239-254. (1974) Zbl0311.02052MR0429518
- Kaye R., Models of Peano Arithmetic, Oxford University Press, 1991. Zbl1020.03065MR1098499
- Kirby L.A.S., Paris J.B., Accessible independence results for Peano arithmetic, Bull. London Math. Soc. 14 285-293 (1982). (1982) Zbl0501.03017MR0663480
- Lewis F.D., Classes of recursive functions and their index sets, Zeitschr. f. math. Logik und Grundlagen d. Math. 17 291-294 (1971). (1971) Zbl0229.02035MR0294130
- Odifreddi P., Classical Recursion Theory, North-Holland, Amsterdam, 1989. Zbl0931.03057MR0982269
- Paris J.B., Harrington L., A mathematical incompleteness in Peano arithmetic, in J. Barwise, editor, Handbook of Mathematical Logic, Chapter D8., North-Holland, 1977. MR0457132
- Rogers H., Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967. Zbl0256.02015MR0224462
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.