Arithmetical classification of the set of all provably recursive functions

Vítězslav Švejdar

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 4, page 631-634
  • ISSN: 0010-2628

Abstract

top
The set of all indices of all functions provably recursive in any reasonable theory T is shown to be recursively isomorphic to U × U ¯ , where U is Π 2 -complete set.

How to cite

top

Švejdar, Vítězslav. "Arithmetical classification of the set of all provably recursive functions." Commentationes Mathematicae Universitatis Carolinae 40.4 (1999): 631-634. <http://eudml.org/doc/248443>.

@article{Švejdar1999,
abstract = {The set of all indices of all functions provably recursive in any reasonable theory $T$ is shown to be recursively isomorphic to $U\times \overline\{U\}$, where $U$ is $\Pi _2$-complete set.},
author = {Švejdar, Vítězslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {provable; recursive; complete; recursive; provable; complete},
language = {eng},
number = {4},
pages = {631-634},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Arithmetical classification of the set of all provably recursive functions},
url = {http://eudml.org/doc/248443},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Švejdar, Vítězslav
TI - Arithmetical classification of the set of all provably recursive functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 4
SP - 631
EP - 634
AB - The set of all indices of all functions provably recursive in any reasonable theory $T$ is shown to be recursively isomorphic to $U\times \overline{U}$, where $U$ is $\Pi _2$-complete set.
LA - eng
KW - provable; recursive; complete; recursive; provable; complete
UR - http://eudml.org/doc/248443
ER -

References

top
  1. Buss S.R., Bounded Arithmetic, Bibliopolis, Napoli, 1986. Zbl1148.03038MR0880863
  2. Hájek P., Pudlák P., Metamathematics of First Order Arithmetic, Springer, 1993. MR1219738
  3. Hay L., Index sets universal for differences of arithmetic sets, Zeitschr. f. math. Logik und Grundlagen d. Math. 20 (1974), 239-254. (1974) Zbl0311.02052MR0429518
  4. Kaye R., Models of Peano Arithmetic, Oxford University Press, 1991. Zbl1020.03065MR1098499
  5. Kirby L.A.S., Paris J.B., Accessible independence results for Peano arithmetic, Bull. London Math. Soc. 14 285-293 (1982). (1982) Zbl0501.03017MR0663480
  6. Lewis F.D., Classes of recursive functions and their index sets, Zeitschr. f. math. Logik und Grundlagen d. Math. 17 291-294 (1971). (1971) Zbl0229.02035MR0294130
  7. Odifreddi P., Classical Recursion Theory, North-Holland, Amsterdam, 1989. Zbl0931.03057MR0982269
  8. Paris J.B., Harrington L., A mathematical incompleteness in Peano arithmetic, in J. Barwise, editor, Handbook of Mathematical Logic, Chapter D8., North-Holland, 1977. MR0457132
  9. Rogers H., Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967. Zbl0256.02015MR0224462

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.