Hardy inequalities in function spaces

Hans Triebel

Mathematica Bohemica (1999)

  • Volume: 124, Issue: 2-3, page 123-130
  • ISSN: 0862-7959

Abstract

top
Let Ω be a bounded C domain in n . The paper deals with inequalities of Hardy type related to the function spaces B p q s ( Ω ) and F p q s ( Ω ) .

How to cite

top

Triebel, Hans. "Hardy inequalities in function spaces." Mathematica Bohemica 124.2-3 (1999): 123-130. <http://eudml.org/doc/248449>.

@article{Triebel1999,
abstract = {Let $\Omega $ be a bounded $C^\infty $ domain in $\mathbb \{R\}^n$. The paper deals with inequalities of Hardy type related to the function spaces $B^s_\{pq\}(\Omega )$ and $F^s_\{pq\}(\Omega )$.},
author = {Triebel, Hans},
journal = {Mathematica Bohemica},
keywords = {Hardy inequality; function spaces; Hardy inequality; function spaces},
language = {eng},
number = {2-3},
pages = {123-130},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hardy inequalities in function spaces},
url = {http://eudml.org/doc/248449},
volume = {124},
year = {1999},
}

TY - JOUR
AU - Triebel, Hans
TI - Hardy inequalities in function spaces
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 123
EP - 130
AB - Let $\Omega $ be a bounded $C^\infty $ domain in $\mathbb {R}^n$. The paper deals with inequalities of Hardy type related to the function spaces $B^s_{pq}(\Omega )$ and $F^s_{pq}(\Omega )$.
LA - eng
KW - Hardy inequality; function spaces; Hardy inequality; function spaces
UR - http://eudml.org/doc/248449
ER -

References

top
  1. Bergh J., Löfström J., Interpolation Spaces, Springer, Berlin, 1976. (1976) 
  2. Edmunds D. E., Haroske D., Spaces of Lipschitz Type, Embeddings and Entropy Numbers, Preprint, Jena, 1998. (1998) MR1677961
  3. Edmunds D. E., Triebel H., Function Spaces, Entropy Numbers, Differential Operators, Cambridge Univ. Press, Cambridge, 1996. (1996) Zbl0865.46020MR1410258
  4. Franke J., 10.1002/mana.19861250104, Math. Nachr. 125 (1986), 29-68. (1986) MR0847350DOI10.1002/mana.19861250104
  5. Grisvard P., 10.1007/BF00281421, Arch. Rational Mech. Anal. 25 (1967), 40-63. (1967) Zbl0187.05901MR0213864DOI10.1007/BF00281421
  6. Grisvard P., 10.24033/asens.1178, Ann. Sci. École Norm. Sup. 2 (1969), no. 4, 311-395. (1969) MR0270209DOI10.24033/asens.1178
  7. Löfström J., 10.1112/jlms/s2-46.3.499, J. London Math. Soc. 46 (1992), 499-516. (1992) MR1190434DOI10.1112/jlms/s2-46.3.499
  8. Runst, Th., Sickel W., Sobolev Spaces of Practional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, W. de Gruyter, Berlin 1996. (1996) MR1419319
  9. Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978 (2nd ed. Barth, Heidelberg 1995). (1978) Zbl0387.46033MR1328645
  10. Triebel H., Theory of Function Spaces, Birkhäuser, Basel, 1983. (1983) Zbl0546.46028MR0781540
  11. Triebel H., Theory of Function Spaces II, Birkhäuser, Basel, 1992. (1992) Zbl0763.46025MR1163193
  12. Triebel H., Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces, Proc.London Math.Soc. 66 (1993), 589-618. (1993) Zbl0792.46024MR1207550
  13. Triebel H., Decompositions of function spaces, Topics in Nonlinear Analysis. Birkhäuser, Basel, 1999, pp. 691-730. (1999) Zbl0920.46027MR1725591

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.