A second look on definition and equivalent norms of Sobolev spaces

Joachim Naumann; Christian G. Simader

Mathematica Bohemica (1999)

  • Volume: 124, Issue: 2-3, page 315-328
  • ISSN: 0862-7959

Abstract

top
Sobolev’s original definition of his spaces L m , p ( Ω ) is revisited. It only assumed that Ω n is a domain. With elementary methods, essentially based on Poincare’s inequality for balls (or cubes), the existence of intermediate derivates of functions u L m , p ( Ω ) with respect to appropriate norms, and equivalence of these norms is proved.

How to cite

top

Naumann, Joachim, and Simader, Christian G.. "A second look on definition and equivalent norms of Sobolev spaces." Mathematica Bohemica 124.2-3 (1999): 315-328. <http://eudml.org/doc/248450>.

@article{Naumann1999,
abstract = {Sobolev’s original definition of his spaces $L^\{m,p\}(\Omega )$ is revisited. It only assumed that $\Omega \subseteq \mathbb \{R\}^n$ is a domain. With elementary methods, essentially based on Poincare’s inequality for balls (or cubes), the existence of intermediate derivates of functions $u\in L^\{m,p\}(\Omega )$ with respect to appropriate norms, and equivalence of these norms is proved.},
author = {Naumann, Joachim, Simader, Christian G.},
journal = {Mathematica Bohemica},
keywords = {Sobolev spaces; Poincaré’s inequality; existence of intermediate derivates; Sobolev spaces; Poincaré’s inequality; existence of intermediate derivates},
language = {eng},
number = {2-3},
pages = {315-328},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A second look on definition and equivalent norms of Sobolev spaces},
url = {http://eudml.org/doc/248450},
volume = {124},
year = {1999},
}

TY - JOUR
AU - Naumann, Joachim
AU - Simader, Christian G.
TI - A second look on definition and equivalent norms of Sobolev spaces
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 315
EP - 328
AB - Sobolev’s original definition of his spaces $L^{m,p}(\Omega )$ is revisited. It only assumed that $\Omega \subseteq \mathbb {R}^n$ is a domain. With elementary methods, essentially based on Poincare’s inequality for balls (or cubes), the existence of intermediate derivates of functions $u\in L^{m,p}(\Omega )$ with respect to appropriate norms, and equivalence of these norms is proved.
LA - eng
KW - Sobolev spaces; Poincaré’s inequality; existence of intermediate derivates; Sobolev spaces; Poincaré’s inequality; existence of intermediate derivates
UR - http://eudml.org/doc/248450
ER -

References

top
  1. Adams R. A., Sobolev Spaces, Academic Press, Inc, Boston, 1978, (1978) Zbl0347.46040
  2. Besov O. V., Il'in V. P., Nikol'skij S. M., Integral Representations of Functions and Imbedding Theorems, Engl. Transl: V.H. Winston & Sons, Washington; J. Wiley & Sons, New York, vol. I: 1978, vol. II: 1979, Izd. Nauka, Moskva, 1975. (In Russian.) (1978) MR0430771
  3. Burenkov V. I., Sobolev Spaces on Domains, B. G. Teubner, Stuttgart, 1998. (1998) Zbl0893.46024MR1622690
  4. Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, (2nd ed.), Springer-Verlag, Berlin, 1983. (1983) Zbl0562.35001MR0737190
  5. Kufner A., John O., Fučík S., Function Spaces, Academia, Prague, 1977. (1977) MR0482102
  6. Maz'ja V. G., Sobolev Spaces, Springer-Verlag, Berlin, 1985. (1985) Zbl0692.46023MR0817985
  7. Maz'ja V. G., Poborchij S. V., Differentiable Functions on Bad Domains, World Scientific, Singapore, 1997. (1997) MR1643072
  8. Nečas J., Les méthodes directes en théorie des équations elliptiques, Academia, Praha, 1967. (1967) MR0227584
  9. Nikoľskij S. M., Approximation of Functions of Several Variables and Imbedding Theorems, Engl. transl: Springer-Verlag, Berlin 1975, Izd. Nauka, Moskva, 1969 (In Russian.). (1975) MR0374877
  10. Sobolev S. L., On some estimates related to families of functions having derivatives which are square integrable, Dokl. Akad. Nauk 1 (1936), 267-270. (In Russian.) (1936) 
  11. Sobolev S. L., On a theorem in functional analysis, Mat. Sborn. 4 (1938), 471-497 (In Russian.); Engl. transl. Amer. Math. Soc. Transl. II Ser. 34 (1963), 39-68. (1938) 
  12. Sobolev S. L., Some Applications of Functional Analysis in Mathematical Physics, 1st ed.: LGU Leningrad, 1950; 2nd ed.: NGU Novosibirsk, 1962; Зrd ed.; Izd. Nauka, Moskva 1988. (In Russian.) Engl. transl.: Amer. Math. Soc. Providence R.I, 1963; German transl: Akademie-Verlag Berlin 1964. (1950) MR0986735
  13. Triebel H., Interpolation Theory, Function Spaces, Differential Operators, (2nd ed.), J. A.Barth Verlag, Beidelberg, 1995. (1995) Zbl0830.46028MR1328645
  14. Ziemer W. P., Weakly Differentiable Functions, Springer-Verlag, New York, 1989. (1989) Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.