A "peculiar'' spectrum for nonlinear operators A "strange" spectrum for nonlinear operators

Jürgen Appell

Mathematica Bohemica (1999)

  • Volume: 124, Issue: 2-3, page 221-229
  • ISSN: 0862-7959

Abstract

top
We define a spectrum for Lipschitz continuous nonlinear operators in Banach spaces by means of a certain kind of "pseudo-adjoint" and study some of its properties.

How to cite

top

Appell, Jürgen. "Ein „merkwürdiges” Spektrum für nichtlineare Operatoren." Mathematica Bohemica 124.2-3 (1999): 221-229. <http://eudml.org/doc/248472>.

@article{Appell1999,
author = {Appell, Jürgen},
journal = {Mathematica Bohemica},
keywords = {nonlinear operator; Lipschitz continuity; pseudo-adjoint operator; resolvent set; spectrum; eigenvalue; generalized spectral radius; nonlinear operator; Lipschitz continuity; pseudo-adjoint operator; resolvent set; spectrum; eigenvalue; generalized spectral radius},
language = {ger},
number = {2-3},
pages = {221-229},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ein „merkwürdiges” Spektrum für nichtlineare Operatoren},
url = {http://eudml.org/doc/248472},
volume = {124},
year = {1999},
}

TY - JOUR
AU - Appell, Jürgen
TI - Ein „merkwürdiges” Spektrum für nichtlineare Operatoren
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 221
EP - 229
LA - ger
KW - nonlinear operator; Lipschitz continuity; pseudo-adjoint operator; resolvent set; spectrum; eigenvalue; generalized spectral radius; nonlinear operator; Lipschitz continuity; pseudo-adjoint operator; resolvent set; spectrum; eigenvalue; generalized spectral radius
UR - http://eudml.org/doc/248472
ER -

References

top
  1. Appell J., De Pascale E., Vignoli A., A comparison of different spectra for nonlinear Operators, Nonlin. Anal. To appear. Zbl0956.47035
  2. Appell J., Dörfner M., 10.1016/S0362-546X(96)00040-5, Nonlin. Anal. 28 (12) (1997), 1955-1976. (1997) Zbl0876.47042MR1436365DOI10.1016/S0362-546X(96)00040-5
  3. Cacuci D. G., Perez R. B., Protopopescu V., 10.1063/1.528075, J. Math. Phys. 29 (1988), 353-361. (1988) Zbl0695.35221MR0927019DOI10.1063/1.528075
  4. Caselles V., Duality and nonlinear equations governed by accretive Operators, Publ. Math. Fac. Sci. Besancon 12 (1990), 7-25. (1990) Zbl0766.47029MR1034994
  5. Edmunds D.E., Webb J. R. L., Remarks on nonlinear spectral theory, Boll. Un. Mat. Ital. B 2 (1983), 377-390. (1983) MR0698500
  6. Feng W., 10.1155/S1085337597000328, Abstr. Appl. Anal. 2 (1997), 163-183. (1997) Zbl0952.47047MR1604177DOI10.1155/S1085337597000328
  7. Furi M., Martelli M., Vignoli A., Contributions to the spectral theory for nonlinear Operators in Banach Spaces, Ann. Mat. Pura Appl. 118 (1978), 229-294. (1978) Zbl0409.47043MR0533609
  8. Kachurovskij R. I., Regular points, spectrum and eigenfunctions of nonlinear operators, Dokl. Akad. Nauk 188 (1969), 274-277. (Russian, Engl, transl.: Soviet Math. Dokl. 10 (1969), 1101-1105.) (1969) Zbl0197.40402MR0251599
  9. Maddox I. J., Wickstead A. W., The spectrum of uniformly Lipschitz mappings, Proc. Roy. Irish Acad. A 89 (1989), 101-114. (1989) Zbl0661.47048MR1021228
  10. Nashed M. Z., Differentiability and related properties of nonlinear operators: some aspects of the role of differentials in nonlinear functional analysis, Nonlinear Functional Analysis and Applications (L. B. Rail, ed.). Academic Press, New York, 1971. (1971) MR0276840
  11. Neuberger J. W., 10.2140/pjm.1969.31.157, Pacific J. Math. 31 (1969), 157-159. (1969) Zbl0182.47203MR0259696DOI10.2140/pjm.1969.31.157
  12. Rhodius A., 10.1002/mana.19770790137, Math. Nachr. 79 (1977), 343-360. (1977) MR0637086DOI10.1002/mana.19770790137
  13. Shutjaev V. P., On calculation of a functional in a nonlinear problem using an adjoint equation, Zh. Vychisl. Mat. Mat. Fiz, 31 (1991), 1278-1288. (Russian, Engl. transl.: J. Comput. Math. Math. Phys. 31 (1991), 8-16.) (1991) MR1145198
  14. Trenogin V. A., Operators which are adjoint to nonlinear operators in weakly metric spaces, Trudy Mezhd. Konf. 175-let. P. L. Chebysheva, Izdat. MGU 1 (1996), 335-337, (Russian.) (1996) 
  15. Trenogin V. A., Properties of resolvent sets and estimates for the resolvent of nonlinear operators, Dokl. Akad. Nauk 359 (1998), 24-26. (Russian.) (1998) MR1668399
  16. Yamamuro S., 10.1017/S1446788700006091, J. Austral. Math. Soc. 8 (1968), 397-409. (1968) Zbl0184.17802MR0233202DOI10.1017/S1446788700006091

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.