A descriptive definition of a BV integral in the real line

Diana Caponetti; Valeria Marraffa

Mathematica Bohemica (1999)

  • Volume: 124, Issue: 4, page 421-432
  • ISSN: 0862-7959

Abstract

top
A descriptive characterization of a Riemann type integral, defined by BV partition of unity, is given and the result is used to prove a version of the controlled convergence theorem.

How to cite

top

Caponetti, Diana, and Marraffa, Valeria. "A descriptive definition of a BV integral in the real line." Mathematica Bohemica 124.4 (1999): 421-432. <http://eudml.org/doc/248475>.

@article{Caponetti1999,
abstract = {A descriptive characterization of a Riemann type integral, defined by BV partition of unity, is given and the result is used to prove a version of the controlled convergence theorem.},
author = {Caponetti, Diana, Marraffa, Valeria},
journal = {Mathematica Bohemica},
keywords = {pseudopartition; strong Luzin condition; bounded variation; Riemann type integral; controlled convergence theorem; ACG$^\circ $; ACG$^\circ $; pseudopartition; strong Luzin condition; bounded variation; Riemann type integral; controlled convergence theorem},
language = {eng},
number = {4},
pages = {421-432},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A descriptive definition of a BV integral in the real line},
url = {http://eudml.org/doc/248475},
volume = {124},
year = {1999},
}

TY - JOUR
AU - Caponetti, Diana
AU - Marraffa, Valeria
TI - A descriptive definition of a BV integral in the real line
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 4
SP - 421
EP - 432
AB - A descriptive characterization of a Riemann type integral, defined by BV partition of unity, is given and the result is used to prove a version of the controlled convergence theorem.
LA - eng
KW - pseudopartition; strong Luzin condition; bounded variation; Riemann type integral; controlled convergence theorem; ACG$^\circ $; ACG$^\circ $; pseudopartition; strong Luzin condition; bounded variation; Riemann type integral; controlled convergence theorem
UR - http://eudml.org/doc/248475
ER -

References

top
  1. B. Bongiorno L. Di Piazza, Convergence theorems for generalized Riemann-Stieltjes integrals, Real Anal. Exchange 11 (1991-92), 339-361. (1991) MR1147373
  2. B. Bongiorno M. Giertz W. F. Pfeffer, Some nonabsolutely convergent integrals in the real line, Boll. Un. Mat. Ital. B (7) 6 (1992), 371-402. (1992) MR1171108
  3. B. Bongiorno W. F. Pfeffer, A concept of absolute continuity and a Riemann type integral, Comment. Math. Univ. Carolin. 33 (1992), 184-196. (1992) MR1189651
  4. D. Caponetti V. Marraffa, An integral in the real line defined by BV partitions of unity, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 69-82. (1994) MR1282323
  5. J. Kurzweil J. Mawhin W. F. Pfeffer, An integral defined by approximating BV partitions of unity, Czechoslovak Math. J. 41 (1991), 695-712. (1991) MR1134958
  6. P. Y. Lee, On ACG* functions, Real Anal. Exchange IS (1989-90), 754-759. (1989) MR1059436
  7. W. F. Pfeffer, 10.1016/0001-8708(91)90063-D, Adv. Math. 87 (1991), 93-147. (1991) Zbl0732.26013MR1102966DOI10.1016/0001-8708(91)90063-D
  8. W. F. Pfeffer, 10.1090/S0002-9939-1992-1072090-2, Proc. Amer. Math. Soc. 114 (1992), 99-106. (1992) MR1072090DOI10.1090/S0002-9939-1992-1072090-2
  9. W. F. Pfeffer, The Riemann Approach to Integration, Cambridge Univ. Press, Cambridge, 1993. (1993) Zbl0804.26005MR1268404

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.