# Topological spaces with a selected subset-cardinal invariants and inequalities

Anatoly A. Gryzlov; Dimitrina N. Stavrova

Commentationes Mathematicae Universitatis Carolinae (1994)

- Volume: 35, Issue: 3, page 525-531
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topGryzlov, Anatoly A., and Stavrova, Dimitrina N.. "Topological spaces with a selected subset-cardinal invariants and inequalities." Commentationes Mathematicae Universitatis Carolinae 35.3 (1994): 525-531. <http://eudml.org/doc/247585>.

@article{Gryzlov1994,

abstract = {Cardinal functions for topological spaces in which a subset is selected in a certain way are defined and studied. Most of the main cardinal inequalities are generalized for such spaces.},

author = {Gryzlov, Anatoly A., Stavrova, Dimitrina N.},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {Lindelöf number; cellularity; cardinal invariants with respect to a subset; Lindelöf number; cellularity; cardinal invariants with respect to a subset; cardinal inequalities},

language = {eng},

number = {3},

pages = {525-531},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {Topological spaces with a selected subset-cardinal invariants and inequalities},

url = {http://eudml.org/doc/247585},

volume = {35},

year = {1994},

}

TY - JOUR

AU - Gryzlov, Anatoly A.

AU - Stavrova, Dimitrina N.

TI - Topological spaces with a selected subset-cardinal invariants and inequalities

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 1994

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 35

IS - 3

SP - 525

EP - 531

AB - Cardinal functions for topological spaces in which a subset is selected in a certain way are defined and studied. Most of the main cardinal inequalities are generalized for such spaces.

LA - eng

KW - Lindelöf number; cellularity; cardinal invariants with respect to a subset; Lindelöf number; cellularity; cardinal invariants with respect to a subset; cardinal inequalities

UR - http://eudml.org/doc/247585

ER -

## References

top- Archangel'skii A.V., On the cardinality of bicompacta satisfying the first axiom of countability, Soviet Math. Dokl. 10 (1969), 951-955. (1969)
- Archangel'skii A.V., A theorem about cardinality, Uspehi Matem. Nauk 34 (1979), 177-178. (1979) MR0548421
- Archangel'skii A.V., M.M. Genedi Hamdi, The position of subspaces in a topological space: relative compactness, Lindelöfness and axioms of separation, Vestnik Moskovskogo Universiteta, ser I., vol. 6, 1989, 67-69.
- Bell M., Ginsburgh J., Woods G., Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79 (1978), 37-45. (1978) MR0526665
- Engelking R., General Topology, Warszawa, 1976. Zbl0684.54001
- Hajnal A., Juhasz I., Discrete Subspaces of Topological Spaces I & II, Pc. Koninkl. Nederl. Akad. Wet., Ser. A, 70 (1967), 343-356; 72 (1969), 18-30. MR0264585
- Juhasz I., Cardinal Functions in Topology - Ten Years Later, Math. Centre Tracts 123, Amsterdam, 1980. Zbl0479.54001MR0576927
- Liu Xiao Shi, Two cardinal functions of topological spaces and improvements of some famous cardinal inequalities, Acta Math. Sinica 29 (1986), 494-497. (1986) MR0867698
- Sun Shu-Hao, A note on Archangel'skii's inequality, J. Math. Soc. Japan 39 (1987), 363-365. (1987) MR0900974
- Stavrova D.N., A New Inequality for the Cardinality of topological Spaces, Proc. of the XX-th Conf. of the UBM, 1991.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.