Local solvability and regularity results for a class of semilinear elliptic problems in nonsmooth domains
M. Bochniak; Anna-Margarete Sändig
Mathematica Bohemica (1999)
- Volume: 124, Issue: 2-3, page 245-254
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBochniak, M., and Sändig, Anna-Margarete. "Local solvability and regularity results for a class of semilinear elliptic problems in nonsmooth domains." Mathematica Bohemica 124.2-3 (1999): 245-254. <http://eudml.org/doc/248476>.
@article{Bochniak1999,
abstract = {We consider a class of semilinear elliptic problems in two- and three-dimensional domains with conical points. We introduce Sobolev spaces with detached asymptotics generated by the asymptotical behaviour of solutions of corresponding linearized problems near conical boundary points. We show that the corresponding nonlinear operator acting between these spaces is Frechet differentiable. Applying the local invertibility theorem we prove that the solution of the semilinear problem has the same asymptotic behaviour near the conical points as the solution of the linearized problem if the norms of the given right hand sides are small enough. Estimates for the difference between the solution of the semilinear and of the linearized problem are derived.},
author = {Bochniak, M., Sändig, Anna-Margarete},
journal = {Mathematica Bohemica},
keywords = {semilinear elliptic problems; spaces with detached asymptotics; asymptotic behaviour near conical points; semilinear elliptic problems; spaces with detached asymptotics; asymptotic behaviour near conical points},
language = {eng},
number = {2-3},
pages = {245-254},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Local solvability and regularity results for a class of semilinear elliptic problems in nonsmooth domains},
url = {http://eudml.org/doc/248476},
volume = {124},
year = {1999},
}
TY - JOUR
AU - Bochniak, M.
AU - Sändig, Anna-Margarete
TI - Local solvability and regularity results for a class of semilinear elliptic problems in nonsmooth domains
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 245
EP - 254
AB - We consider a class of semilinear elliptic problems in two- and three-dimensional domains with conical points. We introduce Sobolev spaces with detached asymptotics generated by the asymptotical behaviour of solutions of corresponding linearized problems near conical boundary points. We show that the corresponding nonlinear operator acting between these spaces is Frechet differentiable. Applying the local invertibility theorem we prove that the solution of the semilinear problem has the same asymptotic behaviour near the conical points as the solution of the linearized problem if the norms of the given right hand sides are small enough. Estimates for the difference between the solution of the semilinear and of the linearized problem are derived.
LA - eng
KW - semilinear elliptic problems; spaces with detached asymptotics; asymptotic behaviour near conical points; semilinear elliptic problems; spaces with detached asymptotics; asymptotic behaviour near conical points
UR - http://eudml.org/doc/248476
ER -
References
top- A. Azzam, Behaviour of solutions of Dirichlet problem for elliptic equations at a corner, Indian J. Pure Appl. Math. 10 (1979), 1453-1459. (1979) Zbl0443.35021MR0551783
- H. Blum R. Rannacher, 10.1002/mma.1670020416, Math. Methods Appl. Sci. 2 (1980), 556-581. (1980) MR0595625DOI10.1002/mma.1670020416
- M. Borsuk D. Portnyagin, Barriers on cones for degenerate quasilinear elliptic operators, Electron. J. Differential Equations 11 (1998), 1-8. (1998) MR1613596
- Ph. Ciarlet, Mathematical Elasticity I, North-Holland, Amsterdam, 1988. (1988) MR0936420
- M. Dobrowolski, On quasilinear elliptic equations in domains with conical boundary points, J. Reine Angew. Math. 394 (1989), 186-195. (1989) Zbl0655.35022MR0977441
- G. Dziuk, 10.1007/BF01174570, Math. Z. 159 (1978), 89-100. (1978) Zbl0375.35025MR0481479DOI10.1007/BF01174570
- M. Feistauer, Mathematical Methods in Fluid Dynamics, Longman, New York, 1993. (1993) Zbl0819.76001MR1266627
- A. Friedman, Mathematics in Industrial Problems 2, Springer-Verlag, New York, 1989. (1989) MR0968664
- A. Friedman, Mathematics in Industrial Problems 3, Springer-Verlag, New York, 1990. (1990) MR0968664
- P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing Inc., Boston, 1985. (1985) Zbl0695.35060MR0775683
- V. A. Kondrat'ev, Boundary problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc. 16 (1967), 209-292. (1967) Zbl0194.13405MR0226187
- V. A. Kozlov V. G. Maz'ya, 10.1070/SM1992v073n01ABEH002533, Mat. Sb. 73 (1992), 27-48. (1992) MR1124101DOI10.1070/SM1992v073n01ABEH002533
- V. A. Kozlov V. G. Maz'ya, On the spectrum of an operator pencils generated by the Neumann problem in a cone, St. Petersburg Math. J. 3 (1992), 333-353. (1992) MR1137524
- V. A. Kozlov J. Rossmann, Singularities of solutions of elliptic boundary value problems near conical points, Math. Nachr. 170 (1994), 161-181. (1994) MR1302373
- A. W. Leung, Systems of Nonlinear Partial Differential Equations, Kluwer, Dordrecht, 1989. (1989) Zbl0691.35002MR1621827
- M. Marcus V. J. Mizel, 10.1090/S0002-9947-1979-0531975-1, Trans. Amer. Math. Soc. 251 (1979), 187-218. (1979) MR0531975DOI10.1090/S0002-9947-1979-0531975-1
- V. G. Maz'ya B. A. Plamenevsky, On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points, Math. Nachr. 76 (1977), 29-60. (1977) MR0601608
- V. G. Maz'ya B. A. Plamenevsky, 10.1090/trans2/123/03, Amer. Math. Soc. Transl. 123 (1984), 89-107. (1984) DOI10.1090/trans2/123/03
- E. Miersemann, 10.1002/mana.19881350120, Math. Nachr. 135 (1988), 239-274. (1988) MR0944231DOI10.1002/mana.19881350120
- S. A. Nazarov, On the two-dimensional aperture problem for Navier-Stokes equations, C. R. Acad. Sci Paris, Sér. I Math. 323 (1996), 699-703. (1996) Zbl0860.35096MR1411068
- S. A. Nazarov K. I. Piletskas, 10.1070/IM1985v025n03ABEH001305, Math. USSR Izvestiya 25 (1985), 531-550. (1985) DOI10.1070/IM1985v025n03ABEH001305
- S. A. Nazarov B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, 1994. (1994) MR1283387
- M. Orlt A.-M. Sändig, Regularity of viscous Navier-Stokes Flows in nonsmooth domains, Boundary Value Problems and Integral Equations in Nonsmooth Domains (M.Costabel, M.Dauge, S.Nicaise, eds.). Marcel Dekker Inc., 1995. (1995) MR1301336
- L. Recke, 10.1080/03605309508821140, Comm. Partial Differential Equations 20 (1995), 1457-1479. (1995) Zbl0838.35044MR1349220DOI10.1080/03605309508821140
- P. Tolksdorf, 10.1080/03605308308820285, Comm. Partial Differential Equations 8 (1983), 773-817. (1983) Zbl0515.35024MR0700735DOI10.1080/03605308308820285
- T. Valent, Boundary Value Problems of Finite Elasticity, Springer-Verlag, New York Inc., 1988. (1988) Zbl0648.73019MR0917733
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.