The cyclic subfield integer index

Bart de Smit

Journal de théorie des nombres de Bordeaux (2000)

  • Volume: 12, Issue: 1, page 209-218
  • ISSN: 1246-7405

Abstract

top
In this note we consider the index in the ring of integers of an abelian extension of a number field K of the additive subgroup generated by integers which lie in subfields that are cyclic over K . This index is finite, it only depends on the Galois group and the degree of K , and we give an explicit combinatorial formula for it. When generalizing to more general Dedekind domains, a correction term can be needed if there is an inseparable extension of residue fields. We identify this correction term for abelian extensions of type ( p , p ) .

How to cite

top

de Smit, Bart. "The cyclic subfield integer index." Journal de théorie des nombres de Bordeaux 12.1 (2000): 209-218. <http://eudml.org/doc/248486>.

@article{deSmit2000,
abstract = {In this note we consider the index in the ring of integers of an abelian extension of a number field $K$ of the additive subgroup generated by integers which lie in subfields that are cyclic over $K$. This index is finite, it only depends on the Galois group and the degree of $K$, and we give an explicit combinatorial formula for it. When generalizing to more general Dedekind domains, a correction term can be needed if there is an inseparable extension of residue fields. We identify this correction term for abelian extensions of type $(p, p)$.},
author = {de Smit, Bart},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Fitting ideal; Dedekind domain; finite abelian extension},
language = {eng},
number = {1},
pages = {209-218},
publisher = {Université Bordeaux I},
title = {The cyclic subfield integer index},
url = {http://eudml.org/doc/248486},
volume = {12},
year = {2000},
}

TY - JOUR
AU - de Smit, Bart
TI - The cyclic subfield integer index
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 1
SP - 209
EP - 218
AB - In this note we consider the index in the ring of integers of an abelian extension of a number field $K$ of the additive subgroup generated by integers which lie in subfields that are cyclic over $K$. This index is finite, it only depends on the Galois group and the degree of $K$, and we give an explicit combinatorial formula for it. When generalizing to more general Dedekind domains, a correction term can be needed if there is an inseparable extension of residue fields. We identify this correction term for abelian extensions of type $(p, p)$.
LA - eng
KW - Fitting ideal; Dedekind domain; finite abelian extension
UR - http://eudml.org/doc/248486
ER -

References

top
  1. [1] D. Burns, Factorisability, group lattices, and Galois module structure. J. Algebra134 (1990), 257-270. Zbl0734.11064MR1074329
  2. [2] N.G. de Bruijn, On the factorization of cyclic groups. Indag. Math. (N.S.) 15 (1953), 370-377. Zbl0051.25803MR59271
  3. [3] B. de Smit, The different and differentials for local fields with imperfect residue fields. Proc. Edinburgh Math. Soc. (2) 40 (1997), 353-365. Zbl0874.11075MR1454030
  4. [4] B. de Smit, Factor equivalence results for integers and units. Enseign. Math. (2) 42 (1996), 383-394. Zbl0884.11044MR1426445
  5. [5] B. de Smit, Primitive elements in integral bases. Acta Arith.71 (1995), 159-170. Zbl0829.11052MR1339123
  6. [6] A. Fajardo Mirón, private communication, May 1991. 
  7. [7] A. Fröhlich, L-values at zero and multiplicative Galois module structure (also Galois Gauss sums and additive Galois module structure). J. Reine Angew. Math.397 (1989), 42-99. Zbl0693.12012MR993218
  8. [8] R. Gillard, Remarques sur les unités cyclotomiques et les unités elliptiques. J. Number Theory11 (1979), 21-48. Zbl0405.12008MR527759
  9. [9] G. Gras, Étude d'invariants relatifs aux groupes des classes des corps abéliens. Astérisque41-42 (1977), 35-53. Zbl0445.12002MR447174
  10. [10] H.W. Lenstra, Jr., Grothendieck groups of abelian group rings. J. Pure Appl. Algebra20 (1981), 173-193. Zbl0467.16016MR601683
  11. [11] C. Parry, Bicyclic bicubic fields. Canad. J. Math.42 (1990) no. 3, 491-507. Zbl0715.11059MR1062741
  12. [12] L. Rédei, Über das Kreisteilungspolynom. Acta Math. Hungar.5 (1954), 27-28. Zbl0055.01305MR62760
  13. [13] J.-P. Serre, Local fields. Springer-Verlag, New York, 1979. Zbl0423.12016MR554237
  14. [14] L.C. Washington, Introduction to cyclotomic fields. Springer-Verlag, New York, 1982. Zbl0484.12001MR718674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.