The cyclic subfield integer index
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 1, page 209-218
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topde Smit, Bart. "The cyclic subfield integer index." Journal de théorie des nombres de Bordeaux 12.1 (2000): 209-218. <http://eudml.org/doc/248486>.
@article{deSmit2000,
abstract = {In this note we consider the index in the ring of integers of an abelian extension of a number field $K$ of the additive subgroup generated by integers which lie in subfields that are cyclic over $K$. This index is finite, it only depends on the Galois group and the degree of $K$, and we give an explicit combinatorial formula for it. When generalizing to more general Dedekind domains, a correction term can be needed if there is an inseparable extension of residue fields. We identify this correction term for abelian extensions of type $(p, p)$.},
author = {de Smit, Bart},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Fitting ideal; Dedekind domain; finite abelian extension},
language = {eng},
number = {1},
pages = {209-218},
publisher = {Université Bordeaux I},
title = {The cyclic subfield integer index},
url = {http://eudml.org/doc/248486},
volume = {12},
year = {2000},
}
TY - JOUR
AU - de Smit, Bart
TI - The cyclic subfield integer index
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 1
SP - 209
EP - 218
AB - In this note we consider the index in the ring of integers of an abelian extension of a number field $K$ of the additive subgroup generated by integers which lie in subfields that are cyclic over $K$. This index is finite, it only depends on the Galois group and the degree of $K$, and we give an explicit combinatorial formula for it. When generalizing to more general Dedekind domains, a correction term can be needed if there is an inseparable extension of residue fields. We identify this correction term for abelian extensions of type $(p, p)$.
LA - eng
KW - Fitting ideal; Dedekind domain; finite abelian extension
UR - http://eudml.org/doc/248486
ER -
References
top- [1] D. Burns, Factorisability, group lattices, and Galois module structure. J. Algebra134 (1990), 257-270. Zbl0734.11064MR1074329
- [2] N.G. de Bruijn, On the factorization of cyclic groups. Indag. Math. (N.S.) 15 (1953), 370-377. Zbl0051.25803MR59271
- [3] B. de Smit, The different and differentials for local fields with imperfect residue fields. Proc. Edinburgh Math. Soc. (2) 40 (1997), 353-365. Zbl0874.11075MR1454030
- [4] B. de Smit, Factor equivalence results for integers and units. Enseign. Math. (2) 42 (1996), 383-394. Zbl0884.11044MR1426445
- [5] B. de Smit, Primitive elements in integral bases. Acta Arith.71 (1995), 159-170. Zbl0829.11052MR1339123
- [6] A. Fajardo Mirón, private communication, May 1991.
- [7] A. Fröhlich, L-values at zero and multiplicative Galois module structure (also Galois Gauss sums and additive Galois module structure). J. Reine Angew. Math.397 (1989), 42-99. Zbl0693.12012MR993218
- [8] R. Gillard, Remarques sur les unités cyclotomiques et les unités elliptiques. J. Number Theory11 (1979), 21-48. Zbl0405.12008MR527759
- [9] G. Gras, Étude d'invariants relatifs aux groupes des classes des corps abéliens. Astérisque41-42 (1977), 35-53. Zbl0445.12002MR447174
- [10] H.W. Lenstra, Jr., Grothendieck groups of abelian group rings. J. Pure Appl. Algebra20 (1981), 173-193. Zbl0467.16016MR601683
- [11] C. Parry, Bicyclic bicubic fields. Canad. J. Math.42 (1990) no. 3, 491-507. Zbl0715.11059MR1062741
- [12] L. Rédei, Über das Kreisteilungspolynom. Acta Math. Hungar.5 (1954), 27-28. Zbl0055.01305MR62760
- [13] J.-P. Serre, Local fields. Springer-Verlag, New York, 1979. Zbl0423.12016MR554237
- [14] L.C. Washington, Introduction to cyclotomic fields. Springer-Verlag, New York, 1982. Zbl0484.12001MR718674
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.