Cryptography based on number fields with large regulator
Johannes Buchmann; Markus Maurer; Bodo Möller
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 2, page 293-307
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] I. Biehl, J. Buchmann, Algorithms for quadratic orders. In: Mathematics of Computation 1943-1993: a half-century of computational mathematics, Vancouver 1993, W. Gautschi, Ed., vol. 48 of Proceedings of Symposia in Applied Mathematics, American Mathematical Society (1995), pp. 425-449. Zbl0839.11068MR1314882
- [2] I. Biehl, J. Buchmann, S. Hamdy, A. Meyer, A signature scheme based on the intractability of extracting roots. Tech. Rep. TI-1/00, Technische Universität Darmstadt, Fachbereich Informatik, 2000. http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/. Zbl1024.94009
- [3] I. Biehl, B. Meyer, C. Thiel, Cryptographic protocols based on real-quadratic A-fields (extended abstract). In Advances in Cryptology - ASIACRYPT '96, K. Kim and T. Matsumoto, Eds., vol. 1163 of Lecture Notes in Computer Science, Springer-Verlag (1996), pp. 15-25. Zbl1008.94545
- [4] Z.I. Borevich, I.R. Shafarevich, Number theory. Academic Press, New York (1966). Zbl0145.04902MR195803
- [5] G. BRASSARD, Ed., Advances in Cryptology - CRYPTO '89, vol. 435 of Lecture Notes in Computer Science, Springer-Verlag (1990). Zbl0719.00029MR1062221
- [6] J. Buchmann, On the computation of units and class numbers by a generalization of Lagrange's algorithm. Journal of Number Theory26 (1987), 8-30. Zbl0615.12001MR883530
- [7] J. Buchmann, it Zur Komplexität der Berechnung von Einheiten und Klassenzahlen algebraischer Zahlkörper. Habilitationsschrift (1987).
- [8] J. Buchmann, S. Paulus, A one way function based on ideal arithmetic in number fields. In: Advances in Cryptology - CRYPTO '97, B. S. Kaliski, Ed., vol. 1294 of Lecture Notes in Computer Science, Springer-Verlag (1997), pp. 385-394. Zbl0888.94011
- [9] J. Buchmann, H.C. Williams, A key exchange system based on real quadratic fields. In Brassard [5], pp. 335-343. Zbl0722.68043MR1062244
- [10] D.A. Buell, Binary quadratic forms. Springer-Verlag, New York (1989). Zbl0698.10013MR1012948
- [11] M.V.D. Burmester, Y. Desmedt, F. Piper, M. Walker, A general zero-knowledge scheme. In: Advances in Cryptology - EUROCRYPT '89, J.-J. Quisquater and J. Vandewalle, Eds., vol. 434 of Lecture Notes in Computer Science, Springer-Verlag (1990), pp. 122-133. Zbl0732.68034MR1083958
- [12] D. Chaum, J.-H. Evertse, J. Van De Graaf, An improved protocol for demonstrating posession of discrete logarithms and some generalizations. In: Advances in Cryptology- EUROCRYPT '87, D. Chaum and W. L. Price, Eds., vol. 304 of Lecture Notes in Computer Science, Springer-Verlag (1988), pp. 127-142. Zbl0647.94015
- [13] H. Cohen, J.W. Lenstra, JR., Heuristics on class groups of number fields. In: Number Theory, Noordwijkerhout1983, H. Jager, Ed., vol. 1068 of Lecture Notes in Mathematics.Springer-Verlag (1984), pp. 33-62. Zbl0558.12002MR756082
- [14] H. Cohen, J. Martinet, Class groups of number fields: numerical heuristics. Mathematics of Computation48 (1987), 123-137. Zbl0627.12006MR866103
- [15] H. Cohen, J. Martinet, Étude heuristique des groupes de classes des corps de nombres. Journal für die reine und angewandte Mathematik404 (1990), 39-76. Zbl0699.12016MR1037430
- [16] H. Cohen, J. Martinet, Heuristics on class groups: Some good primes are not too good. Mathematics of Computation63 (1994), 329-334. Zbl0827.11067MR1226813
- [17] A. Fiat, A. Shamir, How to prove yourself: practical solutions to identification and signature problems. In: Advances in Cryptology - CRYPTO '86 (1987), A. M. Odlyzko, Ed., vol. 263 of Lecture Notes in Computer Science, Springer-Verlag, pp. 186-194. Zbl0636.94012MR907087
- [18] L.C. Guillou, J.-J. Quisquater, A practical zero-knowledge protocol fitted to security microprocessors minimizing both transmission and memory. In: Advances in Cryptology - EUROCRYPT '88 (1988), C. G. Günther, Ed., vol. 330 of Lecture Notes in Computer Science, Springer-Verlag, pp. 123-128.
- [19] S. Hamdy, B. Möller, Security of cryptosystems based on class groups of imaginary quadratic orders. In: Advances in Cryptology - ASIACRYPT 2000 (2000), T. Matsumoto, Ed., Lecture Notes in Computer Science, Springer-Verlag. To appear. Zbl0974.94012MR1864334
- [20] E. Hecke, Vorlesungen über die Theorie der Algebraischen Zahlen. Leipzig (1923). Zbl49.0106.10JFM49.0106.10
- [21] M.J. Jacobson, JR., Subexponential Class Group Computation in Quadratic Orders. PhD thesis, Technische UniversitätDarmstadt, Fachbereich Informatik, Darmstadt, Germany, 1999.
- [22] LiDIA - a C++ library for computational number theory. http://www.informatik.tu-darmstadt.de/TI/LiDIA/. The LiDIA Group. Zbl0828.11076
- [23] J.E. Littlewood, On the class number of the corpus P(√-k). Proceedings of the London Mathematical Society 2nd series 27 (1928), 358-372. Zbl54.0206.02JFM54.0206.02
- [24] A.J. Menezes, P.C. Van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography. CRC Press (1997). Zbl0868.94001MR1412797
- [25] R.A. Mollin, H.C. Williams, Computation of the class number of a real quadratic field. Utilitas Mathematica41 (1992), 59-308. Zbl0757.11036MR1162532
- [26] G. Poupard, J. Stern, Security analysis of a practical "on the fly" authentication and siganture generation. In: Advances in Cryptology - EUROCRYPT '98 (1998), K. Nyberg, Ed., vol. 1403 of Lecture Notes in Computer Science, Springer-Verlag, pp. 422-436. Zbl0929.68061
- [27] R. Scheidler, J. Buchmann, H.C. Williams, A key-exchange protocol using real quadratic fields. Journal of Cryptology7 (1994), 171-199. Zbl0816.94018MR1286662
- [28] C.P. Schnorr, Efficient identification and signatures for smart cards. In: Brassard [5], pp. 239-252. Zbl0722.68050MR1062237
- [29] U. Vollmer, Asymptotically fast discrete logarithms in quadratic number fields. In: Algorithmic Number Theory, ANTS-IV (2000), W. Bosma, Ed., vol. 1838 of Lecture Notes in Computer Science, Springer-Verlag, pp. 581-594. Zbl1032.11064MR1850635
- [30] H.C. Williams, M.C. Wunderlich, On the parallel generation of the residues for the continued fraction factoring algorithm. Mathematics of Computation48 (1987), 405-423. Zbl0617.10005MR866124