On extremal additive codes of length to
Christine Bachoc; Philippe Gaborit
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 2, page 255-271
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBachoc, Christine, and Gaborit, Philippe. "On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$." Journal de théorie des nombres de Bordeaux 12.2 (2000): 255-271. <http://eudml.org/doc/248496>.
@article{Bachoc2000,
abstract = {In this paper we consider the extremal even self-dual $\mathbb \{F\}_4$-additive codes. We give a complete classification for length $10$. Under the hypothesis that at least two minimal words have the same support, we classify the codes of length $14$ and we show that in length $18$ such a code is equivalent to the unique $\mathbb \{F\}_4$-hermitian code with parameters [18,9,8]. We construct with the help of them some extremal $3$-modular lattices.},
author = {Bachoc, Christine, Gaborit, Philippe},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {additive code; self-dual code; extremal code},
language = {eng},
number = {2},
pages = {255-271},
publisher = {Université Bordeaux I},
title = {On extremal additive $\mathbb \{F\}_4$ codes of length $10$ to $18$},
url = {http://eudml.org/doc/248496},
volume = {12},
year = {2000},
}
TY - JOUR
AU - Bachoc, Christine
AU - Gaborit, Philippe
TI - On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 2
SP - 255
EP - 271
AB - In this paper we consider the extremal even self-dual $\mathbb {F}_4$-additive codes. We give a complete classification for length $10$. Under the hypothesis that at least two minimal words have the same support, we classify the codes of length $14$ and we show that in length $18$ such a code is equivalent to the unique $\mathbb {F}_4$-hermitian code with parameters [18,9,8]. We construct with the help of them some extremal $3$-modular lattices.
LA - eng
KW - additive code; self-dual code; extremal code
UR - http://eudml.org/doc/248496
ER -
References
top- [1] C. Bachoc, Harmonic weight enumemtors of nonbinary codes and Mac Williams identities. Preprint (1999).
- [2] A. Bonisoli, Every equidistant linear code is a sequence of dual hamming codes. Ars Comb.18 (1983), 181-186. Zbl0561.94006MR823843
- [3] W. Bosma, J. Cannon, Handbook of Magma functions. Sydney (1995).
- [4] A.R. Calderbank, E.M. Rains, P.W. Shor, N.J.A. Sloane, Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory IT-44 (1998), 1369-1387. Zbl0982.94029MR1665774
- [5] J. Conway, N.J.A. Sloane, Sphere packings, Lattices and Groups. Springer-Verlag (1988). Zbl0634.52002MR920369
- [6] P. Gaborit, W.C. Huffman, J.-L. Kim, V. Pless, On the classification of extremal additive codes over GF(4). to appear in: Proceedings of the 37th Allerton Conference on Communication, Control, and Computing (1999), UIUC.
- [7] G. Höhn, Self-dual codes over the Kleinian four group. Preprint (1996). MR2015068
- [8] W.C. Huffman, On extremal self-dual quaternary codes of lengths 18 to 28. IEEE Trans. Inform. Theory36 (1990), 651-660. Zbl0703.94013MR1053859
- [9] F.J. Macwilliams, A.M. Odlyzko, N.J.A. Sloane, H.N. Ward, Self-Dual Codes over GF(4). J. Comb. Theory25 (1978), 288-318. Zbl0397.94013MR514624
- [10] G. Nebe, Finite subgroups of GL(24, Q). Exp. Math.5 (1996), 2341-2397. Zbl0856.20031MR1390378
- [11] H.-G. Quebbemann, Modular Lattices in Euclidean Spaces. J. Number Theory54 (1995), 190-202. Zbl0874.11038MR1354045
- [12] E.M. Rains, N.J.A. Sloane, Self-dual codes. In: Handbook of Coding Theory, ed. V. S. Pless and W. C. Huffman. Amsterdam: Elsevier, 1998, pp. 177-294. Zbl0936.94017MR1667939
- [13] R. Scharlau, R. Schulze-Pillot, Extremal Lattices, Algorithmic Algebra and Number Theory (Heidelberg1997), 139-170, Springer, Berlin, 1999. Zbl0944.11012MR1672117
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.