On extremal additive 𝔽 4 codes of length 10 to 18

Christine Bachoc; Philippe Gaborit

Journal de théorie des nombres de Bordeaux (2000)

  • Volume: 12, Issue: 2, page 255-271
  • ISSN: 1246-7405

Abstract

top
In this paper we consider the extremal even self-dual 𝔽 4 -additive codes. We give a complete classification for length 10 . Under the hypothesis that at least two minimal words have the same support, we classify the codes of length 14 and we show that in length 18 such a code is equivalent to the unique 𝔽 4 -hermitian code with parameters [18,9,8]. We construct with the help of them some extremal 3 -modular lattices.

How to cite

top

Bachoc, Christine, and Gaborit, Philippe. "On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$." Journal de théorie des nombres de Bordeaux 12.2 (2000): 255-271. <http://eudml.org/doc/248496>.

@article{Bachoc2000,
abstract = {In this paper we consider the extremal even self-dual $\mathbb \{F\}_4$-additive codes. We give a complete classification for length $10$. Under the hypothesis that at least two minimal words have the same support, we classify the codes of length $14$ and we show that in length $18$ such a code is equivalent to the unique $\mathbb \{F\}_4$-hermitian code with parameters [18,9,8]. We construct with the help of them some extremal $3$-modular lattices.},
author = {Bachoc, Christine, Gaborit, Philippe},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {additive code; self-dual code; extremal code},
language = {eng},
number = {2},
pages = {255-271},
publisher = {Université Bordeaux I},
title = {On extremal additive $\mathbb \{F\}_4$ codes of length $10$ to $18$},
url = {http://eudml.org/doc/248496},
volume = {12},
year = {2000},
}

TY - JOUR
AU - Bachoc, Christine
AU - Gaborit, Philippe
TI - On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 2
SP - 255
EP - 271
AB - In this paper we consider the extremal even self-dual $\mathbb {F}_4$-additive codes. We give a complete classification for length $10$. Under the hypothesis that at least two minimal words have the same support, we classify the codes of length $14$ and we show that in length $18$ such a code is equivalent to the unique $\mathbb {F}_4$-hermitian code with parameters [18,9,8]. We construct with the help of them some extremal $3$-modular lattices.
LA - eng
KW - additive code; self-dual code; extremal code
UR - http://eudml.org/doc/248496
ER -

References

top
  1. [1] C. Bachoc, Harmonic weight enumemtors of nonbinary codes and Mac Williams identities. Preprint (1999). 
  2. [2] A. Bonisoli, Every equidistant linear code is a sequence of dual hamming codes. Ars Comb.18 (1983), 181-186. Zbl0561.94006MR823843
  3. [3] W. Bosma, J. Cannon, Handbook of Magma functions. Sydney (1995). 
  4. [4] A.R. Calderbank, E.M. Rains, P.W. Shor, N.J.A. Sloane, Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory IT-44 (1998), 1369-1387. Zbl0982.94029MR1665774
  5. [5] J. Conway, N.J.A. Sloane, Sphere packings, Lattices and Groups. Springer-Verlag (1988). Zbl0634.52002MR920369
  6. [6] P. Gaborit, W.C. Huffman, J.-L. Kim, V. Pless, On the classification of extremal additive codes over GF(4). to appear in: Proceedings of the 37th Allerton Conference on Communication, Control, and Computing (1999), UIUC. 
  7. [7] G. Höhn, Self-dual codes over the Kleinian four group. Preprint (1996). MR2015068
  8. [8] W.C. Huffman, On extremal self-dual quaternary codes of lengths 18 to 28. IEEE Trans. Inform. Theory36 (1990), 651-660. Zbl0703.94013MR1053859
  9. [9] F.J. Macwilliams, A.M. Odlyzko, N.J.A. Sloane, H.N. Ward, Self-Dual Codes over GF(4). J. Comb. Theory25 (1978), 288-318. Zbl0397.94013MR514624
  10. [10] G. Nebe, Finite subgroups of GL(24, Q). Exp. Math.5 (1996), 2341-2397. Zbl0856.20031MR1390378
  11. [11] H.-G. Quebbemann, Modular Lattices in Euclidean Spaces. J. Number Theory54 (1995), 190-202. Zbl0874.11038MR1354045
  12. [12] E.M. Rains, N.J.A. Sloane, Self-dual codes. In: Handbook of Coding Theory, ed. V. S. Pless and W. C. Huffman. Amsterdam: Elsevier, 1998, pp. 177-294. Zbl0936.94017MR1667939
  13. [13] R. Scharlau, R. Schulze-Pillot, Extremal Lattices, Algorithmic Algebra and Number Theory (Heidelberg1997), 139-170, Springer, Berlin, 1999. Zbl0944.11012MR1672117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.