Cyclotomic modular lattices
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 2, page 273-280
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Bachoc, C. Batut, Etude Algorithmique de Réseaux Construits avec la Forme Trace. Exp. Math.1 (1992), 184-190. Zbl0787.11024MR1203873
- [2] C. Batut, H.-G. Quebbemann, R. Scharlau, Computations of Cyclotomic Lattices. Exp. Math.4 (1995), 175-179. Zbl0873.11026MR1387475
- [3] E. Bayer-Fluckiger, Definite unimodular lattices having an automorphism of given characteristic polynomial. Comment. Math. Helv.59 (1984), 509-538. Zbl0558.10029MR780074
- [4] E. Bayer-Fluckiger, Lattices, cyclic group actions and number fields. In preparation.
- [5] E. Bayer-Fluckiger, Lattices and number fields. Comtemp. Math.241 (1999), 69-84. Zbl0951.11016MR1718137
- [6] E. Bayer-Fluckiger, Ideal lattices. To appear. MR1975451
- [7] E. Bayer-Fluckiger, J. Martinet, Réseaux liés à des algèbres semi-simples. J. reine angew. Math.415 (1994), 51-69. Zbl0801.11020MR1277294
- [8] M. Craig, Extreme forms and cyclotomy. Mathematika25 (1978), 44-56. Zbl0395.10038MR491524
- [9] M. Craig, A cyclotomic construction of Leech's lattice. Mathematika25 (1978), 236-241. Zbl0413.10024MR533130
- [10] J. Martinet, Les réseaux parfaits des espaces euclidiens, Masson (1996). Zbl0869.11056MR1434803
- [11] H.-G. Quebbemann, Modular Lattices in Euclidean Spaces. J. Number Theory54 (1995), 190-202. Zbl0874.11038MR1354045
- [12] J.-P. Serre, Cours d'arithmétique. P.U.F. (1970). Zbl0225.12002