On integral representations by totally positive ternary quadratic forms

Elise Björkholdt

Journal de théorie des nombres de Bordeaux (2000)

  • Volume: 12, Issue: 1, page 147-164
  • ISSN: 1246-7405

Abstract

top
Let K be a totally real algebraic number field whose ring of integers R is a principal ideal domain. Let f ( x 1 , x 2 , x 3 ) be a totally definite ternary quadratic form with coefficients in R . We shall study representations of totally positive elements N R by f . We prove a quantitative formula relating the number of representations of N by different classes in the genus of f to the class number of R [ - c f N ] , where c f R is a constant depending only on f . We give an algebraic proof of a classical result of H. Maass on representations by sums of three squares over the integers in ( 5 ) and obtain an explicit dependence between the number of representations and the class number of the corresponding bi-quadratic field. We also give similar formulae for some quadratic forms arising from maximal quaternion orders, with class number one, over the integers in real quadratic number fields.

How to cite

top

Björkholdt, Elise. "On integral representations by totally positive ternary quadratic forms." Journal de théorie des nombres de Bordeaux 12.1 (2000): 147-164. <http://eudml.org/doc/248500>.

@article{Björkholdt2000,
abstract = {Let $K$ be a totally real algebraic number field whose ring of integers $R$ is a principal ideal domain. Let $f(x_1, x_2, x_3)$ be a totally definite ternary quadratic form with coefficients in $R$. We shall study representations of totally positive elements $N \in R$ by $f$. We prove a quantitative formula relating the number of representations of $N$ by different classes in the genus of $f$ to the class number of $R[\sqrt\{-c_f N\}]$, where $c_f \in R$ is a constant depending only on $f$. We give an algebraic proof of a classical result of H. Maass on representations by sums of three squares over the integers in $\mathbb \{Q\}(\sqrt\{5\})$ and obtain an explicit dependence between the number of representations and the class number of the corresponding bi-quadratic field. We also give similar formulae for some quadratic forms arising from maximal quaternion orders, with class number one, over the integers in real quadratic number fields.},
author = {Björkholdt, Elise},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {ternary quadratic form; quadratic number field; quaternion order},
language = {eng},
number = {1},
pages = {147-164},
publisher = {Université Bordeaux I},
title = {On integral representations by totally positive ternary quadratic forms},
url = {http://eudml.org/doc/248500},
volume = {12},
year = {2000},
}

TY - JOUR
AU - Björkholdt, Elise
TI - On integral representations by totally positive ternary quadratic forms
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 1
SP - 147
EP - 164
AB - Let $K$ be a totally real algebraic number field whose ring of integers $R$ is a principal ideal domain. Let $f(x_1, x_2, x_3)$ be a totally definite ternary quadratic form with coefficients in $R$. We shall study representations of totally positive elements $N \in R$ by $f$. We prove a quantitative formula relating the number of representations of $N$ by different classes in the genus of $f$ to the class number of $R[\sqrt{-c_f N}]$, where $c_f \in R$ is a constant depending only on $f$. We give an algebraic proof of a classical result of H. Maass on representations by sums of three squares over the integers in $\mathbb {Q}(\sqrt{5})$ and obtain an explicit dependence between the number of representations and the class number of the corresponding bi-quadratic field. We also give similar formulae for some quadratic forms arising from maximal quaternion orders, with class number one, over the integers in real quadratic number fields.
LA - eng
KW - ternary quadratic form; quadratic number field; quaternion order
UR - http://eudml.org/doc/248500
ER -

References

top
  1. [1] E. Björkholdt, Reserch report NO 1997-44, Göteborg, 1997. 
  2. [2] J. Brzezinski, A combinatorial class number formula. J. Reine Angew. Math.402 (1989), 199-210. Zbl0674.16003MR1022800
  3. [3] J. Brzezinski, On automorphisms of quaternion orders. J. Reine Angew. Math.403 (1990), 166-186. Zbl0678.16003MR1030414
  4. [4] J. Brzezinski, On embedding numbers into quaternion orders. Comment. Math. Helvetici66 (1991), 302-318. Zbl0733.11047MR1107843
  5. [5] E.N. Donkar, On Sums of Three Integral Squares in Algebraic Number Fields. Am. J. Math.99 (1977), 1297-1328. Zbl0369.10030MR460286
  6. [6] J. Dzewas, Quadratsummen in reell-quadratischen Zahlkörpern. Matematische Nachrichten21 (1960), 233-284. Zbl0098.03502MR112872
  7. [7] M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren. J. Reine Angew. Math.195 (1955), 127-151. Zbl0068.03303MR80767
  8. [8] J.G. Huard, B.K. Spearman, K.S. Williams, Integral Bases for Quartic Fields with Quadratic Subfields. J. Number Theory51 (1995), 87-102. Zbl0826.11048MR1321725
  9. [9] I. Kaplansky, Submodules of quaternion algebras. Proc. London Math. Soc.19 (1969), 219-232. Zbl0212.39102MR240142
  10. [10] O. Körner, Ordnungen von Quaternionalgebren über lokalen Körpern. J. Reine Angew. Math.333 (1982), 162-178. Zbl0477.12020MR660789
  11. [11] H.W. Lenstra Jr., Quelques examples d'anneaux euclidiens. C. R. Acad. Sci.286 (1978), 683-685. Zbl0381.12005MR498511
  12. [12] H. Maass, Über die Darstellung total positiver Zahlen des Körpers R(√5) als Summe von drei Quadraten. Abh. Math. Sem. Hamburg14 (1941), 185-191. Zbl0025.01602JFM67.0103.02
  13. [13] J. Neukirch, Algebraische Zahlentheorie. Springer-VerlagBerlinHeidelberg, 1992. Zbl0747.11001
  14. [14] M. Peters, Ternäre und quaternäre quadratische Formen und Quaternionalgebren. Acta Arith.15 (1969), 329-365. Zbl0188.11202MR249360
  15. [15] H.P. Rehm, On a Theorem of Gauss Concerning the Number of Integral Solutions of the Equation x2 + y2 + z2 = m. Lecture Notes in Pure and Applied Mathematics Vol. 79, (O. Taussky-Todd, Ed.), Dekker, New York, 1982. Zbl0499.10020
  16. [16] I. Reiner, Maximal Orders. Academic Press Inc. (London) Ltd, 1975. Zbl0305.16001MR1972204
  17. [17] T.R. Shemanske, Representations of Ternary Quadratic Forms and the Class Number of Imaginary Quadratic Fields. Pacific J. Math.122 (1986), 223-250. Zbl0585.10013MR825233
  18. [18] T.R. Shemanske, Ternary Quadratic Forms and Quaternion Algebras. J. Number Theory23 (1986), 203-209. Zbl0585.10012MR845902
  19. [19] V. Schneider, Die elliptischen Fixpunkte zu Modulgruppen in Quaternionen-schiefkorpern. Math. Ann.217 (1975), 29-45. Zbl0295.10022MR384701
  20. [20] B K. Spearman, K.S.Williams, Relative integral bases for quartic fields over quadratic subfields. Acta Math. Hungar.70 (3) (1996), 185-192. Zbl0853.11090MR1374384
  21. [21] M-F. Vignéras, Arithmétique des Algèbres de Quaternions. Springer-VerlagBerlinHeidelberg, 1980. Zbl0422.12008MR580949

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.