On integral representations by totally positive ternary quadratic forms
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 1, page 147-164
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBjörkholdt, Elise. "On integral representations by totally positive ternary quadratic forms." Journal de théorie des nombres de Bordeaux 12.1 (2000): 147-164. <http://eudml.org/doc/248500>.
@article{Björkholdt2000,
abstract = {Let $K$ be a totally real algebraic number field whose ring of integers $R$ is a principal ideal domain. Let $f(x_1, x_2, x_3)$ be a totally definite ternary quadratic form with coefficients in $R$. We shall study representations of totally positive elements $N \in R$ by $f$. We prove a quantitative formula relating the number of representations of $N$ by different classes in the genus of $f$ to the class number of $R[\sqrt\{-c_f N\}]$, where $c_f \in R$ is a constant depending only on $f$. We give an algebraic proof of a classical result of H. Maass on representations by sums of three squares over the integers in $\mathbb \{Q\}(\sqrt\{5\})$ and obtain an explicit dependence between the number of representations and the class number of the corresponding bi-quadratic field. We also give similar formulae for some quadratic forms arising from maximal quaternion orders, with class number one, over the integers in real quadratic number fields.},
author = {Björkholdt, Elise},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {ternary quadratic form; quadratic number field; quaternion order},
language = {eng},
number = {1},
pages = {147-164},
publisher = {Université Bordeaux I},
title = {On integral representations by totally positive ternary quadratic forms},
url = {http://eudml.org/doc/248500},
volume = {12},
year = {2000},
}
TY - JOUR
AU - Björkholdt, Elise
TI - On integral representations by totally positive ternary quadratic forms
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 1
SP - 147
EP - 164
AB - Let $K$ be a totally real algebraic number field whose ring of integers $R$ is a principal ideal domain. Let $f(x_1, x_2, x_3)$ be a totally definite ternary quadratic form with coefficients in $R$. We shall study representations of totally positive elements $N \in R$ by $f$. We prove a quantitative formula relating the number of representations of $N$ by different classes in the genus of $f$ to the class number of $R[\sqrt{-c_f N}]$, where $c_f \in R$ is a constant depending only on $f$. We give an algebraic proof of a classical result of H. Maass on representations by sums of three squares over the integers in $\mathbb {Q}(\sqrt{5})$ and obtain an explicit dependence between the number of representations and the class number of the corresponding bi-quadratic field. We also give similar formulae for some quadratic forms arising from maximal quaternion orders, with class number one, over the integers in real quadratic number fields.
LA - eng
KW - ternary quadratic form; quadratic number field; quaternion order
UR - http://eudml.org/doc/248500
ER -
References
top- [1] E. Björkholdt, Reserch report NO 1997-44, Göteborg, 1997.
- [2] J. Brzezinski, A combinatorial class number formula. J. Reine Angew. Math.402 (1989), 199-210. Zbl0674.16003MR1022800
- [3] J. Brzezinski, On automorphisms of quaternion orders. J. Reine Angew. Math.403 (1990), 166-186. Zbl0678.16003MR1030414
- [4] J. Brzezinski, On embedding numbers into quaternion orders. Comment. Math. Helvetici66 (1991), 302-318. Zbl0733.11047MR1107843
- [5] E.N. Donkar, On Sums of Three Integral Squares in Algebraic Number Fields. Am. J. Math.99 (1977), 1297-1328. Zbl0369.10030MR460286
- [6] J. Dzewas, Quadratsummen in reell-quadratischen Zahlkörpern. Matematische Nachrichten21 (1960), 233-284. Zbl0098.03502MR112872
- [7] M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren. J. Reine Angew. Math.195 (1955), 127-151. Zbl0068.03303MR80767
- [8] J.G. Huard, B.K. Spearman, K.S. Williams, Integral Bases for Quartic Fields with Quadratic Subfields. J. Number Theory51 (1995), 87-102. Zbl0826.11048MR1321725
- [9] I. Kaplansky, Submodules of quaternion algebras. Proc. London Math. Soc.19 (1969), 219-232. Zbl0212.39102MR240142
- [10] O. Körner, Ordnungen von Quaternionalgebren über lokalen Körpern. J. Reine Angew. Math.333 (1982), 162-178. Zbl0477.12020MR660789
- [11] H.W. Lenstra Jr., Quelques examples d'anneaux euclidiens. C. R. Acad. Sci.286 (1978), 683-685. Zbl0381.12005MR498511
- [12] H. Maass, Über die Darstellung total positiver Zahlen des Körpers R(√5) als Summe von drei Quadraten. Abh. Math. Sem. Hamburg14 (1941), 185-191. Zbl0025.01602JFM67.0103.02
- [13] J. Neukirch, Algebraische Zahlentheorie. Springer-VerlagBerlinHeidelberg, 1992. Zbl0747.11001
- [14] M. Peters, Ternäre und quaternäre quadratische Formen und Quaternionalgebren. Acta Arith.15 (1969), 329-365. Zbl0188.11202MR249360
- [15] H.P. Rehm, On a Theorem of Gauss Concerning the Number of Integral Solutions of the Equation x2 + y2 + z2 = m. Lecture Notes in Pure and Applied Mathematics Vol. 79, (O. Taussky-Todd, Ed.), Dekker, New York, 1982. Zbl0499.10020
- [16] I. Reiner, Maximal Orders. Academic Press Inc. (London) Ltd, 1975. Zbl0305.16001MR1972204
- [17] T.R. Shemanske, Representations of Ternary Quadratic Forms and the Class Number of Imaginary Quadratic Fields. Pacific J. Math.122 (1986), 223-250. Zbl0585.10013MR825233
- [18] T.R. Shemanske, Ternary Quadratic Forms and Quaternion Algebras. J. Number Theory23 (1986), 203-209. Zbl0585.10012MR845902
- [19] V. Schneider, Die elliptischen Fixpunkte zu Modulgruppen in Quaternionen-schiefkorpern. Math. Ann.217 (1975), 29-45. Zbl0295.10022MR384701
- [20] B K. Spearman, K.S.Williams, Relative integral bases for quartic fields over quadratic subfields. Acta Math. Hungar.70 (3) (1996), 185-192. Zbl0853.11090MR1374384
- [21] M-F. Vignéras, Arithmétique des Algèbres de Quaternions. Springer-VerlagBerlinHeidelberg, 1980. Zbl0422.12008MR580949
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.