The l p trichotomy for difference systems and applications

Serena Matucci

Archivum Mathematicum (2000)

  • Volume: 036, Issue: 5, page 519-529
  • ISSN: 0044-8753

How to cite

top

Matucci, Serena. "The $l^p$ trichotomy for difference systems and applications." Archivum Mathematicum 036.5 (2000): 519-529. <http://eudml.org/doc/248521>.

@article{Matucci2000,
author = {Matucci, Serena},
journal = {Archivum Mathematicum},
keywords = {nonlinear difference systems; asymptotic behavior of solutions; trichotomy},
language = {eng},
number = {5},
pages = {519-529},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The $l^p$ trichotomy for difference systems and applications},
url = {http://eudml.org/doc/248521},
volume = {036},
year = {2000},
}

TY - JOUR
AU - Matucci, Serena
TI - The $l^p$ trichotomy for difference systems and applications
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 5
SP - 519
EP - 529
LA - eng
KW - nonlinear difference systems; asymptotic behavior of solutions; trichotomy
UR - http://eudml.org/doc/248521
ER -

References

top
  1. 1. Agarval R. P., Difference Equations and Inequalities. Theory, Methods and Applications, Second Edition, Pure and Appl. Math. Vol. 228, Marcel Dekker, New York, 2000. MR1740241
  2. 2. Alonso A. I., Hong J., Obaya R., Exponential Dichotomy and Trichotomy of Difference Equations, J. Comput. Math. Appl., 38 (1999), 41–49. (1999) MR1697341
  3. 3. Cecchi M., Došlá Z., Marini M., Positive Decreasing Solutions of Quasilinear Difference Equations, to appear (2001). MR1861536
  4. 4. Cecchi M., Marini M., Zezza P. L., Asymptotic Properties of the Solutions of Nonlinear Equations with Dichotomies and Applications, Boll. U.M.I., Analisi Funz. Appl., Serie IV, 1 (1982), 209–234. (1982) MR0696272
  5. 5. Conti R., Linear Differential Equations and Control, Instit. Math. Vol. 1, Acad. Press, New York, 1976. (1976) Zbl0356.34007MR0513642
  6. 6. Coppel W. A., Stability and Asymptotic Behavior of Differential Equations, Heat Math. Monograph, Boston, 1965. (1965) Zbl0154.09301MR0190463
  7. 7. Coppel W. A., Dichotomies in Stability Theory, Lecture Notes in Math. Vol. 629, Springer-Verlag, Berlin, 1978. (1978) Zbl0376.34001MR0481196
  8. 8. Elaydi S., Hajek O., Exponential Trichotomy of Differential Systems, J. Math. Anal. Appl., 129 (1988), 362–374. (1988) Zbl0651.34052MR0924294
  9. 9. Elaydi S., Janglajew K., Dichotomy and Trichotomy of Difference Equations, J. Difference Equations Appl., 3 (1998), 417–448. (1998) Zbl0914.39013MR1618103
  10. 10. Medina R., Pinto M., Dichotomies and Asymptotic Equivalence of Nonlinear Difference Systems, J. Difference Equations Appl., 5, (1999), 287–303. (1999) Zbl0973.39008MR1697061
  11. 11. Papaschinopoulos G., On Exponential Trichotomy of Linear Difference Equations, Appl. Anal., 40 (1991), 89–109. (1991) Zbl0687.39003MR1095407
  12. 12. Papaschinopoulos G., Schinas J., A Criterion for the Exponential Dichotomy of Difference Equations, Rend. Sem. Fac. Sci. Univ. Cagliari, 54, (1), (1984), 61–71. (1984) Zbl0607.39001MR0797224
  13. 13. Papaschinopoulos G., Schinas J., Criteria for an Exponential Dichotomy of Difference Equations, Czechoslovak Math. J., 35 (1985), 295–299. (1985) Zbl0693.39001MR0787131
  14. 14. Papaschinopoulos G., Schinas J., Conditions for Exponential Dichotomy of Difference Equations, Rad. Mat., 1, (1), (1985), 9–24. (1985) Zbl0589.39001MR0791743
  15. 15. Sacher R. J., Sell G. R., Existence of Dichotomies and Invariant splittings for Linear Differential Systems, III, J. Differential Eq. 22 (1976), 497–522. (1976) MR0440621
  16. 16. Talpalaru P., Asymptotic Relationship Between Solutions of Two Systems of Difference Equations, Bul. Inst. Politechnic Iasi, XXI (XXV), f. 3–4, Sect. I (1975), 49–58. (1975) Zbl0347.39002MR0397218
  17. 17. Talpalaru P., On Stability of Difference Systems, An. St. Univ. “Al. I. Cuza” Iasi, XXIII Sect. I (1) (1977), 71–76. (1977) Zbl0378.39001MR0457984
  18. 18. Talpalaru P., Asymptotic Properties of the Solutions of Difference Systems via l p - Dichotomy, An. St. Univ. “Al. I. Cuza” Iasi, XXXVII Sect. I (2) (1991), 165–172. (1991) MR1246871

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.