A note on differential and integral equations in locally convex spaces
Daria Bugajewska; Dariusz Bugajewski
Archivum Mathematicum (2000)
- Volume: 036, Issue: 5, page 415-420
- ISSN: 0044-8753
Access Full Article
topHow to cite
topBugajewska, Daria, and Bugajewski, Dariusz. "A note on differential and integral equations in locally convex spaces." Archivum Mathematicum 036.5 (2000): 415-420. <http://eudml.org/doc/248542>.
@article{Bugajewska2000,
author = {Bugajewska, Daria, Bugajewski, Dariusz},
journal = {Archivum Mathematicum},
keywords = {differential equations; integral equations; locally convex spaces},
language = {eng},
number = {5},
pages = {415-420},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A note on differential and integral equations in locally convex spaces},
url = {http://eudml.org/doc/248542},
volume = {036},
year = {2000},
}
TY - JOUR
AU - Bugajewska, Daria
AU - Bugajewski, Dariusz
TI - A note on differential and integral equations in locally convex spaces
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 5
SP - 415
EP - 420
LA - eng
KW - differential equations; integral equations; locally convex spaces
UR - http://eudml.org/doc/248542
ER -
References
top- 1. Astala K., On Peano’s theorem in locally convex spaces, Studia Math., 73, 1982, 213-223. (1982) Zbl0507.34047MR0675425
- 2. Bugajewska D., Topological properties of solution sets of some problems for differential equations, Ph. D. Thesis, Poznań, 1999. (1999)
- 3. Bugajewska D., Bugajewski D., On topological properties of solution sets for differential equations in locally convex spaces, submitted. Zbl1042.34555
- 4. Bugajewski D., On the Volterra integral equation in locally convex spaces, Demonstratio Math., 25, 1992, 747-754. (1992) Zbl0781.45012MR1222551
- 5. Bugajewski D., On differential and integral equations in locally convex spaces, Demonstratio Math., 28, 1995, 961-966. (1995) Zbl0855.34071MR1392249
- 6. Bugajewski D., Szufla S., Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces, Nonlinear Analysis, 20, No 2, 1993, 169-173. (1993) MR1200387
- 7. Constantin A., On the unicity of solution for the differential equation , Rend. Circ. Mat. Palermo, Serie II, 42, 1991, 59-64. (1991) MR1244738
- 8. Hukuhara M., Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l’espace vectorial topologique, J. Fac. Sci. Univ. Tokyo, Sec. I, 8, No 1, 1959, 111-138. (1959) MR0108630
- 9. Januszewski J., Szufla S., On the Urysohn integral equation in locally convex spaces, Publ. Inst. Math., 51, No 65, 1992, 77-80. (1992) MR1213650
- 10. Kelley J.L., Namioka I., Linear topological spaces, Van Nostrand, Princeton, 1963. (1963) Zbl0115.09902MR0166578
- 11. Krasnoselski M.A., Krein S.G., K teorii obyknoviennych differencialnych uravnienij v banachovych prostranstvach, Trudy Semin. Funkc. Anal. Voronež. Univ., 2, 1956, 3-23. (1956)
- 12. Lemmert R., On ordinary differential equations in locally convex spaces, Nonlinear Analysis, 10, No 12, 1986, 1385-1390. (1986) Zbl0612.34056MR0869547
- 13. Millionščikov W., K teorii obyknoviennych differencialnych uravnienij v lokalno vypuklych prostranstvach, Dokl. Akad. Nauk SSSR, 131, 1960, 510-513. (1960)
- 14. Pianigiani P., Existence of solutions of an ordinary differential equations in the case of Banach space, Bull. Ac. Polon.: Math., 8, 1976,667-673. (1976)
- 15. Reichert M., Condensing Volterra operators in locally convex spaces, Analysis, 16, 1996, 347-364. (1996) Zbl0866.47042MR1429459
- 16. Sadovski B. N., Limit-compact and condensing mappings, Russian Math. Surveys, 27, 1972, 81-146. (1972) MR0428132
- 17. Szufla S., Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. Acad. Polon.: Math., 26, 1978, 407-413. (1978) MR0492684
- 18. Szufla S., On the Kneser-Hukuhara property for integral equations in locally convex spaces, Bull. Austral. Math. Soc., 36, 1987, 353-360. (1987) MR0923817
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.