A note on differential and integral equations in locally convex spaces

Daria Bugajewska; Dariusz Bugajewski

Archivum Mathematicum (2000)

  • Volume: 036, Issue: 5, page 415-420
  • ISSN: 0044-8753

How to cite

top

Bugajewska, Daria, and Bugajewski, Dariusz. "A note on differential and integral equations in locally convex spaces." Archivum Mathematicum 036.5 (2000): 415-420. <http://eudml.org/doc/248542>.

@article{Bugajewska2000,
author = {Bugajewska, Daria, Bugajewski, Dariusz},
journal = {Archivum Mathematicum},
keywords = {differential equations; integral equations; locally convex spaces},
language = {eng},
number = {5},
pages = {415-420},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A note on differential and integral equations in locally convex spaces},
url = {http://eudml.org/doc/248542},
volume = {036},
year = {2000},
}

TY - JOUR
AU - Bugajewska, Daria
AU - Bugajewski, Dariusz
TI - A note on differential and integral equations in locally convex spaces
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 5
SP - 415
EP - 420
LA - eng
KW - differential equations; integral equations; locally convex spaces
UR - http://eudml.org/doc/248542
ER -

References

top
  1. 1. Astala K., On Peano’s theorem in locally convex spaces, Studia Math., 73, 1982, 213-223. (1982) Zbl0507.34047MR0675425
  2. 2. Bugajewska D., Topological properties of solution sets of some problems for differential equations, Ph. D. Thesis, Poznań, 1999. (1999) 
  3. 3. Bugajewska D., Bugajewski D., On topological properties of solution sets for differential equations in locally convex spaces, submitted. Zbl1042.34555
  4. 4. Bugajewski D., On the Volterra integral equation in locally convex spaces, Demonstratio Math., 25, 1992, 747-754. (1992) Zbl0781.45012MR1222551
  5. 5. Bugajewski D., On differential and integral equations in locally convex spaces, Demonstratio Math., 28, 1995, 961-966. (1995) Zbl0855.34071MR1392249
  6. 6. Bugajewski D., Szufla S., Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces, Nonlinear Analysis, 20, No 2, 1993, 169-173. (1993) MR1200387
  7. 7. Constantin A., On the unicity of solution for the differential equation x ( n ) = f ( t , x ) , Rend. Circ. Mat. Palermo, Serie II, 42, 1991, 59-64. (1991) MR1244738
  8. 8. Hukuhara M., Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l’espace vectorial topologique, J. Fac. Sci. Univ. Tokyo, Sec. I, 8, No 1, 1959, 111-138. (1959) MR0108630
  9. 9. Januszewski J., Szufla S., On the Urysohn integral equation in locally convex spaces, Publ. Inst. Math., 51, No 65, 1992, 77-80. (1992) MR1213650
  10. 10. Kelley J.L., Namioka I., Linear topological spaces, Van Nostrand, Princeton, 1963. (1963) Zbl0115.09902MR0166578
  11. 11. Krasnoselski M.A., Krein S.G., K teorii obyknoviennych differencialnych uravnienij v banachovych prostranstvach, Trudy Semin. Funkc. Anal. Voronež. Univ., 2, 1956, 3-23. (1956) 
  12. 12. Lemmert R., On ordinary differential equations in locally convex spaces, Nonlinear Analysis, 10, No 12, 1986, 1385-1390. (1986) Zbl0612.34056MR0869547
  13. 13. Millionščikov W., K teorii obyknoviennych differencialnych uravnienij v lokalno vypuklych prostranstvach, Dokl. Akad. Nauk SSSR, 131, 1960, 510-513. (1960) 
  14. 14. Pianigiani P., Existence of solutions of an ordinary differential equations in the case of Banach space, Bull. Ac. Polon.: Math., 8, 1976,667-673. (1976) 
  15. 15. Reichert M., Condensing Volterra operators in locally convex spaces, Analysis, 16, 1996, 347-364. (1996) Zbl0866.47042MR1429459
  16. 16. Sadovski B. N., Limit-compact and condensing mappings, Russian Math. Surveys, 27, 1972, 81-146. (1972) MR0428132
  17. 17. Szufla S., Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. Acad. Polon.: Math., 26, 1978, 407-413. (1978) MR0492684
  18. 18. Szufla S., On the Kneser-Hukuhara property for integral equations in locally convex spaces, Bull. Austral. Math. Soc., 36, 1987, 353-360. (1987) MR0923817

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.