On some specific nonlinear ordinary difference equations

Eugenia N. Petropoulou

Archivum Mathematicum (2000)

  • Volume: 036, Issue: 5, page 549-562
  • ISSN: 0044-8753

How to cite

top

Petropoulou, Eugenia N.. "On some specific nonlinear ordinary difference equations." Archivum Mathematicum 036.5 (2000): 549-562. <http://eudml.org/doc/248549>.

@article{Petropoulou2000,
author = {Petropoulou, Eugenia N.},
journal = {Archivum Mathematicum},
keywords = {nonlinear difference equations; bounded solutions; asymptotic stability},
language = {eng},
number = {5},
pages = {549-562},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On some specific nonlinear ordinary difference equations},
url = {http://eudml.org/doc/248549},
volume = {036},
year = {2000},
}

TY - JOUR
AU - Petropoulou, Eugenia N.
TI - On some specific nonlinear ordinary difference equations
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 5
SP - 549
EP - 562
LA - eng
KW - nonlinear difference equations; bounded solutions; asymptotic stability
UR - http://eudml.org/doc/248549
ER -

References

top
  1. 1. R. P. Agarwal P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic Publishers, 1997. (1997) MR1447437
  2. 2. C.J. Earle R.S. Hamilton, A fixed point theorem for holomorphic mappings, in Global Analysis Proceedings Symposium Pure Mathematics XVI, Berkeley, California, (1968), 61–65, American Mathematical Society, Providence, R.I., (1970). (1968) MR0266009
  3. 3. J. Feuer E. J. Janowski G. Ladas, Invariants for Some Rational Recursive Sequences with Periodic Coeffcients, J. Diff. Equat. Appl. 2 (1996), 167–174. (1996) MR1384566
  4. 4. E. A. Grove E. J. Janowski C. M. Kent G. Ladas, On the Rational Recursive Sequence x n + 1 = α x n + β ( γ x n δ ) x n - 1 , Commun. Appl. Nonlinear Analysis 1 (1994), 61–72. (1994) MR1295493
  5. 5. E. A. Grove C. M. Kent G. Ladas, Boundedness and Persistence of the Nonautonomous Lyness and Max Equations, J. Diff. Equat. Appl. 3 (1998), 241–258. (1998) MR1616018
  6. 6. E.K. Ifantis, On the convergence of Power-Series Whose Coeffcients Satisfy a Poincaré-Type Linear and Nonlinear Difference Equation, Complex Variables 9 (1987), 63–80. (1987) MR0916917
  7. 7. G. Karakostas C. G. Philos Y. G. Sficas, The dynamics of some discrete population models, Nonlinear Analysis, Theory, Methods and Applications 17 (11) (1991), 1069–1084. (1991) MR1136230
  8. 8. Li Longtu, Global asymptotic stability of x n + 1 = F ( x n ) g ( x n 1 ) , Ann. Diff. Equat, 14 (3) (1998), 518–525. (1998) Zbl0963.39006MR1663227
  9. 9. E.N. Petropoulou P.D. Siafarikas, Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane, Arch. Math. (Brno) 36 (2) (2000), 139–158. MR1761618
  10. 10. E.N. Petropoulou P.D. Siafarikas, Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane II, Comp. Math. Appl. (Advances in Difference Equations III), (to appear). MR1838005
  11. 11. I. A. Polyrakis, Lattice Banach spaces, order-isomorphic to l 1 , Math. Proc. Camb. Phil. Soc. 94 (1983), 519–522. (1983) MR0720802
  12. 12. R. Y. Zhang Z. C. Wang Y. Chen J. Wu, Periodic solutions of a single species discrete population model with periodic harvest/stock, Comp. Math. Appl. 39 (1-2) (2000), 77–90. MR1729420

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.