Multistructures determined by differential rings

Jan Chvalina; Ludmila Chvalinová

Archivum Mathematicum (2000)

  • Volume: 036, Issue: 5, page 429-434
  • ISSN: 0044-8753

How to cite

top

Chvalina, Jan, and Chvalinová, Ludmila. "Multistructures determined by differential rings." Archivum Mathematicum 036.5 (2000): 429-434. <http://eudml.org/doc/248554>.

@article{Chvalina2000,
author = {Chvalina, Jan, Chvalinová, Ludmila},
journal = {Archivum Mathematicum},
keywords = {multistructure; differential ring; hypergroup; quasi-hypergroup; indefinite integral},
language = {eng},
number = {5},
pages = {429-434},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Multistructures determined by differential rings},
url = {http://eudml.org/doc/248554},
volume = {036},
year = {2000},
}

TY - JOUR
AU - Chvalina, Jan
AU - Chvalinová, Ludmila
TI - Multistructures determined by differential rings
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 5
SP - 429
EP - 434
LA - eng
KW - multistructure; differential ring; hypergroup; quasi-hypergroup; indefinite integral
UR - http://eudml.org/doc/248554
ER -

References

top
  1. 1. Beránek J., Chvalina J., From groups of linear functions to noncommutative transposition hypergroups, Dept. Math. Report Series, 7, University of South Bohemia 1999, 1 - 10. (1999) 
  2. 2. Bloom W.R., Heyer H., Harmonic Analysis of Probability Measures on Hypergroups, Walter de Gruyter, Berlin – New York, 1994. (1994) MR1312826
  3. 3. Borůvka O., Linear Differential Transformations of the Second Order, English Univ. Press, London, 1971. (1971) MR0463539
  4. 4. Chvalina J., Functional Graphs, Quasi-ordered Sets and Commutative Hypergroups, Masaryk University, Brno, 1995 (Czech). (1995) 
  5. 5. Chvalina J., Chvalinová L., State hypergroups of automata, Acta Math. Informat. Univ. Ostraviensis 4 (1996), 105–120. (1996) Zbl0870.20053MR1446788
  6. 6. Corsini P., Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993. (1993) Zbl0785.20032MR1237639
  7. 7. Hort D., Hypergroups and Ordered Sets, Thesis, Masaryk University, Brno, 1999. (1999) 
  8. 8. Jantosciak J., Transposition in hypergroups, VI. Internat. Congr. Alg. Hyperstructures and Appl., Democritus Univ. of Trace, Alexandroupolis (1966),77–84. (1966) MR1465194
  9. 9. Kaplansky I., An Introduction to Differential Algebra, Hermann, Paris 1957. (1957) Zbl0083.03301MR0093654
  10. 10. Kolchin E.R., Differential Algebraic Groups, Academic Press, London 1973. (1973) MR0776230
  11. 11. Moučka J., Hypergroups determined by Automata and Ordered Sets, Thesis, Milit. Academy of Ground Forces, Vyškov 1997 (Czech). (1997) 
  12. 12. Neuman F., From local to global investigations of linear differential equations of the n-th order, Jahrbuch. Überblicke Math. 1984, 55–68. (1984) Zbl0548.34009
  13. 13. Neuman F., Algebraic aspects of transformations with an application to differential equations, Nonlinear Analysis 40 (2000), 505–511. Zbl0957.34008MR1768906
  14. 14. Novotný M., Ternary structures and groupoids, Czech. Math. J. 41 (1991),90–98. (1991) MR1087627
  15. 15. Rosenberg I.G., Hypergroups and join spaces determined by relations, Italian J. Pure and Appl. Math. 4 (1998), 93–101. (1998) Zbl0962.20055MR1695479
  16. 16. Trimèche K., Generalized Wavelets and Hypergroups, Gordon and Breach Science Publishers, Amsterdam 1997. (1997) Zbl0926.42016MR1489523

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.