The generalized coincidence index --- application to a boundary value problem
Archivum Mathematicum (2000)
- Volume: 036, Issue: 5, page 447-460
- ISSN: 0044-8753
Access Full Article
topHow to cite
topGabor, Dorota. "The generalized coincidence index --- application to a boundary value problem." Archivum Mathematicum 036.5 (2000): 447-460. <http://eudml.org/doc/248573>.
@article{Gabor2000,
author = {Gabor, Dorota},
journal = {Archivum Mathematicum},
keywords = {Fredholm operator; boundary value problem in Banach space; fixed point index},
language = {eng},
number = {5},
pages = {447-460},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The generalized coincidence index --- application to a boundary value problem},
url = {http://eudml.org/doc/248573},
volume = {036},
year = {2000},
}
TY - JOUR
AU - Gabor, Dorota
TI - The generalized coincidence index --- application to a boundary value problem
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 5
SP - 447
EP - 460
LA - eng
KW - Fredholm operator; boundary value problem in Banach space; fixed point index
UR - http://eudml.org/doc/248573
ER -
References
top- 1. R. R. Akhmerov M. I. Kamenskii A. S. Potapov A. E. Rodkina B. N. Sadovskii, Measures of noncompactness and condensing operators, Birkhäuser Verlag, Basel-Boston-Berlin 1992. (1992) MR1153247
- 2. Yu. G. Borisovich B. D. Gelman A. D. Myshkis, V. V. Obukhovskii, Topological methods in the fixed point theory of multivalued mappings, Russian Math. Surveys 35 (1980), 65-143. (1980) MR0565568
- 3. D. Gabor W. Kryszewski, A coincidence Theory involving Fredholm operators of nonnegative index, Topol. Methods Nonlinear Anal. 15, 1 (2000), 43-59. MR1786250
- 4. D. Gabor, The coincidence index for fundamentally contractible multivalued maps with nonconvex values, to appear in Ann. Polon. Math. Zbl0969.47041MR1821162
- 5. D. Gabor, Coincidence points of Fredholm operators and noncompact set-valued maps, (in Polish), Ph.D. Thesis, N. Copernicus University, Toruń 2000.
- 6. K. Gęba I. Massabo A. Vignoli, Generalized topological degree and bifurcation, Proc. Conf. on Nonlinear Anal. Appl., Maratea Italy, 1986, D. Reidel Publ. Co., 55-73. (1986) MR0852570
- 7. S-T. Hu, Homotopy theory, Academic Press, New York 1959. (1959) Zbl0088.38803MR0106454
- 8. W. Kryszewski, Homotopy properties of set-valued mappings, Wyd. Uniwersytetu Mikolaja Kopernika, Toruń 1997. (1997)
- 9. J. Mawhin, Topological degree methods in nonlinear boundary value problems, Conf. Board Math. Sc. 40, Amer. Math. Soc., Providence, Rhode Island 1979. (1979) Zbl0414.34025MR0525202
- 10. T. Pruszko, Some applications of the topological degree theory to multi-valued boundary value problems, Dissertationes Math. 229, 1-52. Zbl0543.34008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.