The generalized coincidence index --- application to a boundary value problem

Dorota Gabor

Archivum Mathematicum (2000)

  • Volume: 036, Issue: 5, page 447-460
  • ISSN: 0044-8753

How to cite

top

Gabor, Dorota. "The generalized coincidence index --- application to a boundary value problem." Archivum Mathematicum 036.5 (2000): 447-460. <http://eudml.org/doc/248573>.

@article{Gabor2000,
author = {Gabor, Dorota},
journal = {Archivum Mathematicum},
keywords = {Fredholm operator; boundary value problem in Banach space; fixed point index},
language = {eng},
number = {5},
pages = {447-460},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The generalized coincidence index --- application to a boundary value problem},
url = {http://eudml.org/doc/248573},
volume = {036},
year = {2000},
}

TY - JOUR
AU - Gabor, Dorota
TI - The generalized coincidence index --- application to a boundary value problem
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 5
SP - 447
EP - 460
LA - eng
KW - Fredholm operator; boundary value problem in Banach space; fixed point index
UR - http://eudml.org/doc/248573
ER -

References

top
  1. 1. R. R. Akhmerov M. I. Kamenskii A. S. Potapov A. E. Rodkina B. N. Sadovskii, Measures of noncompactness and condensing operators, Birkhäuser Verlag, Basel-Boston-Berlin 1992. (1992) MR1153247
  2. 2. Yu. G. Borisovich B. D. Gelman A. D. Myshkis, V. V. Obukhovskii, Topological methods in the fixed point theory of multivalued mappings, Russian Math. Surveys 35 (1980), 65-143. (1980) MR0565568
  3. 3. D. Gabor W. Kryszewski, A coincidence Theory involving Fredholm operators of nonnegative index, Topol. Methods Nonlinear Anal. 15, 1 (2000), 43-59. MR1786250
  4. 4. D. Gabor, The coincidence index for fundamentally contractible multivalued maps with nonconvex values, to appear in Ann. Polon. Math. Zbl0969.47041MR1821162
  5. 5. D. Gabor, Coincidence points of Fredholm operators and noncompact set-valued maps, (in Polish), Ph.D. Thesis, N. Copernicus University, Toruń 2000. 
  6. 6. K. Gęba I. Massabo A. Vignoli, Generalized topological degree and bifurcation, Proc. Conf. on Nonlinear Anal. Appl., Maratea Italy, 1986, D. Reidel Publ. Co., 55-73. (1986) MR0852570
  7. 7. S-T. Hu, Homotopy theory, Academic Press, New York 1959. (1959) Zbl0088.38803MR0106454
  8. 8. W. Kryszewski, Homotopy properties of set-valued mappings, Wyd. Uniwersytetu Mikolaja Kopernika, Toruń 1997. (1997) 
  9. 9. J. Mawhin, Topological degree methods in nonlinear boundary value problems, Conf. Board Math. Sc. 40, Amer. Math. Soc., Providence, Rhode Island 1979. (1979) Zbl0414.34025MR0525202
  10. 10. T. Pruszko, Some applications of the topological degree theory to multi-valued boundary value problems, Dissertationes Math. 229, 1-52. Zbl0543.34008

NotesEmbed ?

top

You must be logged in to post comments.