BGG sequences on spheres

Petr Somberg

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 3, page 509-527
  • ISSN: 0010-2628

Abstract

top
BGG sequences on flat homogeneous spaces are analyzed from the point of view of decomposition of appropriate representation spaces on irreducible parts with respect to a maximal compact subgroup, the so called K -types. In particular, the kernels and images of all standard invariant differential operators (including the higher spin analogs of the basic twistor operator), i.e. operators appearing in BGG sequences, are described.

How to cite

top

Somberg, Petr. "BGG sequences on spheres." Commentationes Mathematicae Universitatis Carolinae 41.3 (2000): 509-527. <http://eudml.org/doc/248580>.

@article{Somberg2000,
abstract = {BGG sequences on flat homogeneous spaces are analyzed from the point of view of decomposition of appropriate representation spaces on irreducible parts with respect to a maximal compact subgroup, the so called $K$-types. In particular, the kernels and images of all standard invariant differential operators (including the higher spin analogs of the basic twistor operator), i.e. operators appearing in BGG sequences, are described.},
author = {Somberg, Petr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {BGG sequences; invariant differential operators; branching rules; $K$-types; complexes; homogeneous spaces; BGG sequences; invariant differential operators; branching rules; -types; complexes; homogeneous spaces},
language = {eng},
number = {3},
pages = {509-527},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {BGG sequences on spheres},
url = {http://eudml.org/doc/248580},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Somberg, Petr
TI - BGG sequences on spheres
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 3
SP - 509
EP - 527
AB - BGG sequences on flat homogeneous spaces are analyzed from the point of view of decomposition of appropriate representation spaces on irreducible parts with respect to a maximal compact subgroup, the so called $K$-types. In particular, the kernels and images of all standard invariant differential operators (including the higher spin analogs of the basic twistor operator), i.e. operators appearing in BGG sequences, are described.
LA - eng
KW - BGG sequences; invariant differential operators; branching rules; $K$-types; complexes; homogeneous spaces; BGG sequences; invariant differential operators; branching rules; -types; complexes; homogeneous spaces
UR - http://eudml.org/doc/248580
ER -

References

top
  1. Baston R.J., Almost Hermitean Symmetric Manifolds I. Local twistor theory, Duke Math. J. 63 1 (1991). (1991) MR1106939
  2. Baston R.J., Almost Hermitean Symmetric manifolds II. Differential invariants, Duke Math. J. . 63 1 (1991). (1991) MR1106940
  3. Baston R.J., Eastwood M.G., The Penrose Transform - its Interaction with Representation Theory, Oxford University Press, New York, 1989. Zbl0726.58004MR1038279
  4. Bernstein I.N., Gelfand I.M., Gelfand S.I., Structure of representations generated by vectors of highest weight, Funct. Anal. Appl. 5 (1971), 1-8. (1971) MR0291204
  5. Branson T., Stein-Weiss operators and ellipticity, J. Funct. Anal. 151 (1997), 334-383. (1997) Zbl0904.58054MR1491546
  6. Branson T., Spectra of self-gradients on spheres, preprint, University of Iowa, August 1998, . MR1718236
  7. Branson T., Olafsson G., Ørsted B., Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup, J. Funct. Anal. 135 (1996), 163-205. (1996) MR1367629
  8. Bureš J., Special invariant operators I., ESI preprint 192 (1995). MR1396170
  9. Čap A., Slovák J., Souček V., Invariant operators with almost hermitean symmetric structures, III. Standard operators, to be published. 
  10. Čap A., Slovák J., Souček V., Bernstein-Gelfand-Gelfand sequences, to be published. 
  11. Delanghe R., Souček V., On the structure of spinor-valued differential forms, Complex Variables 18 (1992), 223-236. (1992) MR1157930
  12. Eastwood M.G., On the weights of conformally invariant operators, Twistor Newsl. 24 (1987), 20-23. (1987) 
  13. Eastwood M.G., Notes on conformal differential geometry, Proc. of Winter School, Srní, in Suppl. Rend. Circ. Mat. di Palermo, ser. II, 43 (1996), 57-76. Zbl0911.53020MR1463509
  14. Fegan H.D., Conformally invariant first order differential operators, Quart. J. Math. 27 (1976), 371-378. (1976) Zbl0334.58016MR0482879
  15. Fulton W., Algebraic topology, Graduate Texts in Mathematics, Springer-Verlag, 1995. Zbl0852.55001MR1343250
  16. Fulton W., Harris J., Representation theory, Graduate texts in Mathematics 129, Springer-Verlag, 1991. Zbl0744.22001MR1153249
  17. Jakobsen H.P., Conformal invariants, Publ. RIMS, Kyoto Univ. 22 (1986), 345-361. (1986) MR0849262
  18. Jakobsen H.P., Vergne M., Wave and Dirac operators and representations of conformal group, J. Funct. Anal. 24 (1977), 52-106. (1977) MR0439995
  19. Knapp A., Lie Groups - Beyond an Introduction, Birkhäuser, 1996. Zbl1075.22501MR1399083
  20. Knapp A., Representation theory of semisimple groups, an overview based on examples, Princeton Mathematical Series 36, 1985. Zbl0993.22001MR0855239
  21. Slovák J., Natural operators on conformal manifolds, Dissertation Thesis, Brno, 1993. MR1255551
  22. Souček V., Conformal invariance of higher spin equations, in Proc. of Symp. `Analytical and Numerical Methods in Clifford Analysis', Lecture in Seifen, 1996. 
  23. Souček V., Monogenic forms and the BGG resolution, preprint, Prague, 1998. MR1845957
  24. Varadarajan V.S., Harmonic Analysis on Semisimple Lie Groups, Cambridge University Press, 1986. Zbl0924.22014
  25. Verma D.N., Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc. 74 (1968), 160-166. (1968) Zbl0157.07604MR0218417
  26. Wünsch V., On conformally invariant differential operators, Math. Nachr. 129 (1986), 269-281. (1986) MR0864639

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.