Connected transversals -- the Zassenhaus case
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 2, page 299-300
 - ISSN: 0010-2628
 
Access Full Article
topAbstract
topHow to cite
topKepka, Tomáš, and Němec, Petr. "Connected transversals -- the Zassenhaus case." Commentationes Mathematicae Universitatis Carolinae 41.2 (2000): 299-300. <http://eudml.org/doc/248598>.
@article{Kepka2000,
	abstract = {In this short note, it is shown that if $A,B$ are $H$-connected transversals for a finite subgroup $H$ of an infinite group $G$ such that the index of $H$ in $G$ is at least 3 and $H\cap H^u\cap H^v=1$ whenever $u,v\in G\setminus H$ and $uv^\{-1\}\in G\setminus H$ then $A=B$ is a normal abelian subgroup of $G$.},
	author = {Kepka, Tomáš, Němec, Petr},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {group; subgroup; connected transversals; core; connected transversals; normal abelian subgroups},
	language = {eng},
	number = {2},
	pages = {299-300},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {Connected transversals -- the Zassenhaus case},
	url = {http://eudml.org/doc/248598},
	volume = {41},
	year = {2000},
}
TY  - JOUR
AU  - Kepka, Tomáš
AU  - Němec, Petr
TI  - Connected transversals -- the Zassenhaus case
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2000
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 41
IS  - 2
SP  - 299
EP  - 300
AB  - In this short note, it is shown that if $A,B$ are $H$-connected transversals for a finite subgroup $H$ of an infinite group $G$ such that the index of $H$ in $G$ is at least 3 and $H\cap H^u\cap H^v=1$ whenever $u,v\in G\setminus H$ and $uv^{-1}\in G\setminus H$ then $A=B$ is a normal abelian subgroup of $G$.
LA  - eng
KW  - group; subgroup; connected transversals; core; connected transversals; normal abelian subgroups
UR  - http://eudml.org/doc/248598
ER  - 
References
top- Drápal A., Multiplication groups of free loops I, Czech. Math. J. 46 (121) (1996), 121-131. (1996) MR1371694
 - Drápal A., Multiplication groups of free loops II, Czech. Math. J. 46 (121) (1996), 201-220. (1996) MR1388610
 - Drápal A., Multiplication groups of finite loops that fix at most two points, submitted.
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.