Hopf algebras of smooth functions on compact Lie groups
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 4, page 651-661
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFarkas, Eva C.. "Hopf algebras of smooth functions on compact Lie groups." Commentationes Mathematicae Universitatis Carolinae 41.4 (2000): 651-661. <http://eudml.org/doc/248603>.
@article{Farkas2000,
abstract = {A $C^\{\infty \}$-Hopf algebra is a $C^\{\infty \}$-algebra which is also a convenient Hopf algebra with respect to the structure induced by the evaluations of smooth functions. We characterize those $C^\{\infty \}$-Hopf algebras which are given by the algebra $C^\{\infty \}(G)$ of smooth functions on some compact Lie group $G$, thus obtaining an anti-isomorphism of the category of compact Lie groups with a subcategory of convenient Hopf algebras.},
author = {Farkas, Eva C.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$C^\{\infty \}$-Hopf-algebras; algebras of smooth functions on compact Lie groups; duality theorem; -Hopf algebras; compact Lie groups; dualities; categories of Hopf algebras},
language = {eng},
number = {4},
pages = {651-661},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hopf algebras of smooth functions on compact Lie groups},
url = {http://eudml.org/doc/248603},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Farkas, Eva C.
TI - Hopf algebras of smooth functions on compact Lie groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 4
SP - 651
EP - 661
AB - A $C^{\infty }$-Hopf algebra is a $C^{\infty }$-algebra which is also a convenient Hopf algebra with respect to the structure induced by the evaluations of smooth functions. We characterize those $C^{\infty }$-Hopf algebras which are given by the algebra $C^{\infty }(G)$ of smooth functions on some compact Lie group $G$, thus obtaining an anti-isomorphism of the category of compact Lie groups with a subcategory of convenient Hopf algebras.
LA - eng
KW - $C^{\infty }$-Hopf-algebras; algebras of smooth functions on compact Lie groups; duality theorem; -Hopf algebras; compact Lie groups; dualities; categories of Hopf algebras
UR - http://eudml.org/doc/248603
ER -
References
top- Abe E., Hopf Algebras, Cambridge University Press, Cambridge, 1980. Zbl0476.16008MR0594432
- Bourbaki N., Groupes et algèbres de Lie, Hermann, Paris, 1972. Zbl1123.22005MR0573068
- Cooper J.B., Michor P., Duality of compactological and locally compact groups, Proc. Conf. Categorical Topology Mannheim 1975, Springer Lecture Notes 540, 1976. MR0507225
- Frölicher A., Kriegl A., Linear Spaces and Differentiation Theory, J. Wiley, Chichester, 1988. MR0961256
- Hochschild G., The Structure of Lie Groups, Holden-Day, 1965. Zbl0131.02702MR0207883
- Jarchow H., Locally Convex Spaces, Teubner, Stuttgart, 1981. Zbl0466.46001MR0632257
- Kainz G., Kriegl A., Michor P., -algebras from the functional analytic view, J. of Pure and Applied Algebra 46 (1987), 89-107. (1987) MR0894394
- Kriegl A., Michor P.W., The convenient setting of global analysis, Mathematical Surveys and Monographs, Vol. 53, Amer. Math. Soc., 1997. Zbl0889.58001MR1471480
- Kriegl A., Michor P.W., Schachermayer W., Characters on algebras of smooth functions, Ann. Global Anal. Geom. 7 ,2 (1989), 85-92. (1989) Zbl0691.58020MR1032327
- Michor P.W., Vanžura J., Characterizing algebras of smooth functions on manifolds, Comment. Math. Univ. Carolinae 37 ,3 (1996), 519-521. (1996) MR1426917
- Milnor J.W., Stasheff J.D., Characteristic classes, Ann. of Math. Stud., Princeton Univ. Press, Princeton, 1974. Zbl1079.57504MR0440554
- Moerdijk I., Reyes G.E., Models for Smooth Infinitesimal Analysis, Springer, Berlin/Heidelberg/New-York, 1991. Zbl0715.18001MR1083355
- Takahashi S., A characterization of group rings as a special class of Hopf algebras, Canad. Math. Bull. 8 ,4 (1965), 465-75. (1965) Zbl0143.26705MR0184988
- Tannaka T., Dualität der nicht-kommutativen bikompakten Gruppen, Tohoku Math. J. 53 (1938), 1-12. (1938)
- Yosida K., Functional Analysis, Springer, Berlin/Heidelberg/New-York, 1980. Zbl0830.46001MR0617913
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.