Hopf algebras of smooth functions on compact Lie groups

Eva C. Farkas

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 4, page 651-661
  • ISSN: 0010-2628

Abstract

top
A C -Hopf algebra is a C -algebra which is also a convenient Hopf algebra with respect to the structure induced by the evaluations of smooth functions. We characterize those C -Hopf algebras which are given by the algebra C ( G ) of smooth functions on some compact Lie group G , thus obtaining an anti-isomorphism of the category of compact Lie groups with a subcategory of convenient Hopf algebras.

How to cite

top

Farkas, Eva C.. "Hopf algebras of smooth functions on compact Lie groups." Commentationes Mathematicae Universitatis Carolinae 41.4 (2000): 651-661. <http://eudml.org/doc/248603>.

@article{Farkas2000,
abstract = {A $C^\{\infty \}$-Hopf algebra is a $C^\{\infty \}$-algebra which is also a convenient Hopf algebra with respect to the structure induced by the evaluations of smooth functions. We characterize those $C^\{\infty \}$-Hopf algebras which are given by the algebra $C^\{\infty \}(G)$ of smooth functions on some compact Lie group $G$, thus obtaining an anti-isomorphism of the category of compact Lie groups with a subcategory of convenient Hopf algebras.},
author = {Farkas, Eva C.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$C^\{\infty \}$-Hopf-algebras; algebras of smooth functions on compact Lie groups; duality theorem; -Hopf algebras; compact Lie groups; dualities; categories of Hopf algebras},
language = {eng},
number = {4},
pages = {651-661},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hopf algebras of smooth functions on compact Lie groups},
url = {http://eudml.org/doc/248603},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Farkas, Eva C.
TI - Hopf algebras of smooth functions on compact Lie groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 4
SP - 651
EP - 661
AB - A $C^{\infty }$-Hopf algebra is a $C^{\infty }$-algebra which is also a convenient Hopf algebra with respect to the structure induced by the evaluations of smooth functions. We characterize those $C^{\infty }$-Hopf algebras which are given by the algebra $C^{\infty }(G)$ of smooth functions on some compact Lie group $G$, thus obtaining an anti-isomorphism of the category of compact Lie groups with a subcategory of convenient Hopf algebras.
LA - eng
KW - $C^{\infty }$-Hopf-algebras; algebras of smooth functions on compact Lie groups; duality theorem; -Hopf algebras; compact Lie groups; dualities; categories of Hopf algebras
UR - http://eudml.org/doc/248603
ER -

References

top
  1. Abe E., Hopf Algebras, Cambridge University Press, Cambridge, 1980. Zbl0476.16008MR0594432
  2. Bourbaki N., Groupes et algèbres de Lie, Hermann, Paris, 1972. Zbl1123.22005MR0573068
  3. Cooper J.B., Michor P., Duality of compactological and locally compact groups, Proc. Conf. Categorical Topology Mannheim 1975, Springer Lecture Notes 540, 1976. MR0507225
  4. Frölicher A., Kriegl A., Linear Spaces and Differentiation Theory, J. Wiley, Chichester, 1988. MR0961256
  5. Hochschild G., The Structure of Lie Groups, Holden-Day, 1965. Zbl0131.02702MR0207883
  6. Jarchow H., Locally Convex Spaces, Teubner, Stuttgart, 1981. Zbl0466.46001MR0632257
  7. Kainz G., Kriegl A., Michor P., C -algebras from the functional analytic view, J. of Pure and Applied Algebra 46 (1987), 89-107. (1987) MR0894394
  8. Kriegl A., Michor P.W., The convenient setting of global analysis, Mathematical Surveys and Monographs, Vol. 53, Amer. Math. Soc., 1997. Zbl0889.58001MR1471480
  9. Kriegl A., Michor P.W., Schachermayer W., Characters on algebras of smooth functions, Ann. Global Anal. Geom. 7 ,2 (1989), 85-92. (1989) Zbl0691.58020MR1032327
  10. Michor P.W., Vanžura J., Characterizing algebras of smooth functions on manifolds, Comment. Math. Univ. Carolinae 37 ,3 (1996), 519-521. (1996) MR1426917
  11. Milnor J.W., Stasheff J.D., Characteristic classes, Ann. of Math. Stud., Princeton Univ. Press, Princeton, 1974. Zbl1079.57504MR0440554
  12. Moerdijk I., Reyes G.E., Models for Smooth Infinitesimal Analysis, Springer, Berlin/Heidelberg/New-York, 1991. Zbl0715.18001MR1083355
  13. Takahashi S., A characterization of group rings as a special class of Hopf algebras, Canad. Math. Bull. 8 ,4 (1965), 465-75. (1965) Zbl0143.26705MR0184988
  14. Tannaka T., Dualität der nicht-kommutativen bikompakten Gruppen, Tohoku Math. J. 53 (1938), 1-12. (1938) 
  15. Yosida K., Functional Analysis, Springer, Berlin/Heidelberg/New-York, 1980. Zbl0830.46001MR0617913

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.