Tower extension of topological constructs
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 1, page 41-51
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZhang, De Xue. "Tower extension of topological constructs." Commentationes Mathematicae Universitatis Carolinae 41.1 (2000): 41-51. <http://eudml.org/doc/248610>.
@article{Zhang2000,
abstract = {Let $L$ be a completely distributive lattice and C a topological construct; a process is given in this paper to obtain a topological construct $\mathbf \{C\} (L)$, called the tower extension of $\mathbf \{C\}$ (indexed by $L$). This process contains the constructions of probabilistic topological spaces, probabilistic pretopological spaces, probabilistic pseudotopological spaces, limit tower spaces, pretopological approach spaces and pseudotopological approach spaces, etc, as special cases. It is proved that this process has a lot of nice properties, for example, it preserves concrete reflectivity, concrete coreflectivity, and it preserves convenient hulls of topological construct, i.e., the extensional topological hulls (ETH), the cartesian closed topological hulls (CCTH) and the topological universe hulls (TUH) of topological constructs.},
author = {Zhang, De Xue},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {topological construct; extensionality; cartesian closedness; tower extension; completely distributive lattice; topological category; approach space},
language = {eng},
number = {1},
pages = {41-51},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Tower extension of topological constructs},
url = {http://eudml.org/doc/248610},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Zhang, De Xue
TI - Tower extension of topological constructs
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 1
SP - 41
EP - 51
AB - Let $L$ be a completely distributive lattice and C a topological construct; a process is given in this paper to obtain a topological construct $\mathbf {C} (L)$, called the tower extension of $\mathbf {C}$ (indexed by $L$). This process contains the constructions of probabilistic topological spaces, probabilistic pretopological spaces, probabilistic pseudotopological spaces, limit tower spaces, pretopological approach spaces and pseudotopological approach spaces, etc, as special cases. It is proved that this process has a lot of nice properties, for example, it preserves concrete reflectivity, concrete coreflectivity, and it preserves convenient hulls of topological construct, i.e., the extensional topological hulls (ETH), the cartesian closed topological hulls (CCTH) and the topological universe hulls (TUH) of topological constructs.
LA - eng
KW - topological construct; extensionality; cartesian closedness; tower extension; completely distributive lattice; topological category; approach space
UR - http://eudml.org/doc/248610
ER -
References
top- Adámek J., Herrlich H., Strecker G.E., Abstract and Concrete Categories, Wiley, New York, 1990. MR1051419
- Adámek J., Koubek V., Cartesian closed initial completions, Topology Appl. 11 (1980), 1-16. (1980) MR0550868
- Antoine P., Étude élémentaire des catégories d'ensembles structrés, Bull. Soc. Math. Belgique 18 (1960), 142-164, 387-414. (1960)
- Blasco N., Lowen R., Fuzzy neighbourhood convergence spaces, Fuzzy Sets and Systems 76 (1995), 395-406. (1995) MR1365406
- Bourdaud G., Some cartesian closed topological categories of convergence spaces, in E. Binz, H. Herrlich (eds.), Categorical Topology, (Proc. Mannheim, 1975), Lecture Notes in Mathematics, 540, Springer, Berlin, 1976, pp.93-108. Zbl0332.54004MR0493924
- Brock P., Kent D.C., Approach spaces, limit tower spaces and probabilistic convergence spaces, Applied Categorical Structures 5 (1997), 99-110. (1997) Zbl0885.54008MR1456517
- Burton M.H., The relationship between a fuzzy uniformity and its family of -level uniformities, Fuzzy Sets and Systems 54 (1993), 311-315. (1993) Zbl0871.54009MR1215574
- Gierz G., et al, A Compendium of Continuous Lattices, Springer, Berlin, 1980. Zbl0452.06001MR0614752
- Herrlich H., Cartesian closed topological categories, Math. Colloq. Univ. Cape Town 9 (1974), 1-16. (1974) Zbl0318.18011MR0460414
- Herrlich H., Are there convenient subcategories of Top?, Topology Appl. 15 (1983), 263-271. (1983) Zbl0538.18004MR0694546
- Herrlich H., Topological improvements of categories of structured sets, Topology Appl. 27 (1987), 145-155. (1987) Zbl0632.54008MR0911688
- Herrlich H., Hereditary topological constructs, in Z. Frolík (ed.), General Topology and its relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium, Heldermann Verlag, Berlin, 1988, pp.240-262. Zbl0662.18003MR0952611
- Herrlich H., On the representability of partial morphisms in Top and in related constructs, in F. Borceux (ed.), Categorical Algebra and its Applications, (Proc. Louvain-La-Neuve, 1987), Lecture Notes in Mathematics, 1348, Springer, Berlin, 1988, pp.143-153. Zbl0662.18004MR0975967
- Herrlich H., Nel L.D., Cartesian closed topological hulls, Proc. Amer. Math. Soc. 62 (1977), 215-222. (1977) Zbl0361.18006MR0476831
- Herrlich H., Zhang D., Categorical properties of probabilistic convergence spaces, Applied Categorical Structures 6 (1998), 495-513. (1998) Zbl0917.54003MR1657510
- Herrlich H., Lowen-Colebunders E., Schwarz F., Improving Top: PrTop and PsTop, in H. Herrlich, H.E. Porst (eds.), Category Theory at Work, Heldermann Verlag, Berlin, 1991, pp.21-34. Zbl0753.18003MR1147916
- Lowen E., Lowen R., Topological quasitopos hulls of categories containing topological and metric objects, Cahiers Top. Géom. Diff. Cat. 30 (1989), 213-228. (1989) Zbl0706.18002MR1029625
- Lowen R., Fuzzy uniform spaces, J. Math. Anal. Appl. 82 (1981), 370-385. (1981) Zbl0494.54005MR0629763
- Lowen R., Fuzzy neighbourhood spaces, Fuzzy Sets and Systems 7 (1982), 165-189. (1982)
- Lowen R., Approach spaces, a common supercategory of TOP and MET, Math. Nachr. 141 (1989), 183-226. (1989) Zbl0676.54012MR1014427
- Lowen R., Approach Spaces, the missing link in the Topology-Uniformity-Metric triad, Oxford Mathematical Monographs, Oxford University Press, 1997. Zbl0891.54001MR1472024
- Lowen R., Windels B., AUnif: A common supercategory of pMet and Unif, Internat. J. Math. Math. Sci. 21 (1998), 1-18. (1998) Zbl0890.54024MR1486952
- Schwarz F., Description of topological universes, in H. Ehrig et al, (eds.), Categorical Methods in Computor Science with Aspects from Topology, (Proc. Berlin, 1988), Lecture Notes in Computor Science, 393, Springer, Berlin, 1989, pp.325-332. MR1048372
- Preuss G., Theory of Topological Structures, an Approach to Categorical Topology, D. Reidel Publishing Company, Dordrecht, 1988. Zbl0649.54001MR0937052
- Richardson G.D., Kent D.C., Probabilistic convergence spaces, J. Austral. Math. Soc., (series A) 61 (1996), 400-420. (1996) Zbl0943.54002MR1420347
- Wuyts P., On the determination of fuzzy topological spaces, and fuzzy neighbourhood spaces by their level topologies, Fuzzy Sets and Systems 12 (1984), 71-85. (1984) Zbl0574.54004MR0734394
- Wyler O., Are there topoi in topology, in E. Binz, H. Herrlich, (eds.), Categorical Topology, (Proc. Mannheim, 1975), Lecture Notes in Mathematics, 540, Springer, Berlin, 1976, pp.699-719. Zbl0354.54001MR0458346
- Wyler O., Lecture Notes on Topoi and Quasitopoi, World Scientific, Singapore, 1991. Zbl0727.18001MR1094373
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.