On very weak solutions of a class of nonlinear elliptic systems
Menita Carozza; Antonia Passarelli di Napoli
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 3, page 493-508
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCarozza, Menita, and Passarelli di Napoli, Antonia. "On very weak solutions of a class of nonlinear elliptic systems." Commentationes Mathematicae Universitatis Carolinae 41.3 (2000): 493-508. <http://eudml.org/doc/248613>.
@article{Carozza2000,
abstract = {In this paper we prove a regularity result for very weak solutions of equations of the type $- \operatorname\{div\} A(x,u,Du)=B(x, u,Du)$, where $A$, $B$ grow in the gradient like $t^\{p-1\}$ and $B(x, u, Du)$ is not in divergence form. Namely we prove that a very weak solution $u\in W^\{1,r\}$ of our equation belongs to $W^\{1,p\}$. We also prove global higher integrability for a very weak solution for the Dirichlet problem \[ \left\lbrace \begin\{array\}\{ll\}-\operatorname\{div\} A(x,u,Du)\,=B(x, u,Du) \quad & \text\{in \} \Omega , \ u-u\_o\in W^\{1,r\}(\Omega ,\mathbb \{R\}^m). \end\{array\}\right.\]},
author = {Carozza, Menita, Passarelli di Napoli, Antonia},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonlinear elliptic systems; maximal operator theory; nonlinear elliptic system; maximal operator},
language = {eng},
number = {3},
pages = {493-508},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On very weak solutions of a class of nonlinear elliptic systems},
url = {http://eudml.org/doc/248613},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Carozza, Menita
AU - Passarelli di Napoli, Antonia
TI - On very weak solutions of a class of nonlinear elliptic systems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 3
SP - 493
EP - 508
AB - In this paper we prove a regularity result for very weak solutions of equations of the type $- \operatorname{div} A(x,u,Du)=B(x, u,Du)$, where $A$, $B$ grow in the gradient like $t^{p-1}$ and $B(x, u, Du)$ is not in divergence form. Namely we prove that a very weak solution $u\in W^{1,r}$ of our equation belongs to $W^{1,p}$. We also prove global higher integrability for a very weak solution for the Dirichlet problem \[ \left\lbrace \begin{array}{ll}-\operatorname{div} A(x,u,Du)\,=B(x, u,Du) \quad & \text{in } \Omega , \ u-u_o\in W^{1,r}(\Omega ,\mathbb {R}^m). \end{array}\right.\]
LA - eng
KW - nonlinear elliptic systems; maximal operator theory; nonlinear elliptic system; maximal operator
UR - http://eudml.org/doc/248613
ER -
References
top- Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), 125-145. (1984) Zbl0565.49010MR0751305
- Dolcini A., A uniqueness result for very weak solutions of -harmonic type equations, Boll. Un. Mat. Ital., Serie VII X-A (1996), 71-84. (1996) Zbl0854.35047MR1386247
- Fiorenza A., Sbordone C., Existence and uniqueness result for solutions of nonlinear equations with right hand side in , Studia Math. 127 (3) (1998), 223-231. (1998) MR1489454
- Giaquinta M., Multiple integrals in the Calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud. 105, Princeton University Press, 1983. Zbl0516.49003MR0717034
- Giaquinta M., Giusti E., On the regularity of the minima of variational integrals, Acta Math. 148 (1982), 31-46. (1982) Zbl0494.49031MR0666107
- Giusti E., Metodi diretti nel Calcolo delle Variazioni, U.M.I., 1984. Zbl0942.49002
- Greco L., Iwaniec T., Sbordone C., Inverting the -harmonic operator, Manuscripta Math. 92 (1997), 249-258. (1997) Zbl0869.35037MR1428651
- Giachetti D., Leonetti F., Schianchi R., On the regularity of very weak minima, Proc. Royal Soc. Edinburgh 126A (1996), 287-296. (1996) Zbl0851.49026MR1386864
- Giachetti D., Schianchi R., Boundary higher integrability for the gradient of distributional solutions of nonlinear systems, preprint. Zbl0869.49020MR1439029
- Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer Verlag, 1982. Zbl1042.35002
- Hedberg L.I., On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510. (1972) MR0312232
- Iwaniec T., -harmonic tensors and quasiregular mappings, Ann. of Math. 136 (1992), 589-624. (1992) Zbl0785.30009MR1189867
- Iwaniec T., Sbordone C., Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161. (1994) Zbl0802.35016MR1288682
- Lewis J., On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations 18 (1993), 1515-1537. (1993) Zbl0796.35061MR1239922
- Moscariello G., Weak minima and quasiminima of variational integrals, B.U.M.I. 7-11B (1997), 355-364. (1997) Zbl0890.49003MR1459284
- Moscariello G., On weak minima of certain integral functionals, Ann. Polon. Math. LXIX.1 (1998), 37-48. (1998) Zbl0920.49021MR1630200
- Muckenhoupt B., Weighted norm inequalities for the Hardy Maximal Function, Trans. Amer. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR0293384
- Sbordone C., Quasiminima of degenerate functionals with non polynomial growth, Rend. Sen. Mat. Fis. Milano LIX (1989), 173-184. (1989) Zbl0760.49023MR1159695
- Torchinsky A., Real variable methods in harmonic analysis, Pure Appl. Math. 123, Academic Press, 1986. Zbl1097.42002MR0869816
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.