# On indefinite BV-integrals

Donatella Bongiorno; Udayan B. Darji; Washek Frank Pfeffer

Commentationes Mathematicae Universitatis Carolinae (2000)

- Volume: 41, Issue: 4, page 843-853
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topBongiorno, Donatella, Darji, Udayan B., and Pfeffer, Washek Frank. "On indefinite BV-integrals." Commentationes Mathematicae Universitatis Carolinae 41.4 (2000): 843-853. <http://eudml.org/doc/248625>.

@article{Bongiorno2000,

abstract = {We present an example of a locally BV-integrable function in the real line whose indefinite integral is not the sum of a locally absolutely continuous function and a function that is Lipschitz at all but countably many points.},

author = {Bongiorno, Donatella, Darji, Udayan B., Pfeffer, Washek Frank},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {BV integral; absolute continuity; pointwise Lipschitz functions; BV-integral; absolute continuity; pointwise Lipschitz functions},

language = {eng},

number = {4},

pages = {843-853},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {On indefinite BV-integrals},

url = {http://eudml.org/doc/248625},

volume = {41},

year = {2000},

}

TY - JOUR

AU - Bongiorno, Donatella

AU - Darji, Udayan B.

AU - Pfeffer, Washek Frank

TI - On indefinite BV-integrals

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 2000

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 41

IS - 4

SP - 843

EP - 853

AB - We present an example of a locally BV-integrable function in the real line whose indefinite integral is not the sum of a locally absolutely continuous function and a function that is Lipschitz at all but countably many points.

LA - eng

KW - BV integral; absolute continuity; pointwise Lipschitz functions; BV-integral; absolute continuity; pointwise Lipschitz functions

UR - http://eudml.org/doc/248625

ER -

## References

top- Bongiorno B., Di Piazza L., Preiss D., A constructive minimal integral which includes Lebesgue integrable functions and derivatives, J. London Math. Soc., to appear. Zbl0980.26006
- Bruckner A.M., Fleissner R.J., Foran J., The minimal integral which includes Lebesgue integrable functions and derivatives, Coll. Math. 50 (1986), 289-293. (1986) Zbl0604.26006MR0857865
- Buczolich Z., Pfeffer W.F., Variations of additive functions, Czechoslovak Math. J. 47 (1997), 525-555. (1997) Zbl0903.26004MR1461431
- McShane E.J., A unified theory of integration, Amer. Math. Monthly 80 (1973), 349-359. (1973) Zbl0266.26008MR0318434
- Pfeffer W.F., The Riemann Approach to Integration, Cambridge Univ. Press, Cambridge, 1993. Zbl1143.26005MR1268404
- Pfeffer W.F., Comparing variations of charges, Indiana Univ. Math. J. 45 (1996), 643-654. (1996) Zbl0894.26004MR1422100
- Pfeffer W.F., On variations of functions of one real variable, Comment. Math. Univ. Carolinae 38.1 (1997), 61-71. (1997) Zbl0888.26006MR1455470

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.