Relatives of K-loops: Theory and examples

Hubert Kiechle

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 2, page 301-323
  • ISSN: 0010-2628

Abstract

top
A K-loop or Bruck loop is a Bol loop with the automorphic inverse property. An overview of the most important theorems on K-loops and some of their relatives, especially Kikkawa loops, is given. First, left power alternative loops are discussed, then Kikkawa loops are considered. In particular, their nuclei are determined. Then the attention is paid to general K-loops and some special classes of K-loops such as 2-divisible ones. To construct examples, the method of derivation is introduced. This has been used in the past to construct quasifields from fields. Many known methods to constructing loops can be seen as special cases of derivations. The examples given show the independence of various axioms.

How to cite

top

Kiechle, Hubert. "Relatives of K-loops: Theory and examples." Commentationes Mathematicae Universitatis Carolinae 41.2 (2000): 301-323. <http://eudml.org/doc/248626>.

@article{Kiechle2000,
abstract = {A K-loop or Bruck loop is a Bol loop with the automorphic inverse property. An overview of the most important theorems on K-loops and some of their relatives, especially Kikkawa loops, is given. First, left power alternative loops are discussed, then Kikkawa loops are considered. In particular, their nuclei are determined. Then the attention is paid to general K-loops and some special classes of K-loops such as 2-divisible ones. To construct examples, the method of derivation is introduced. This has been used in the past to construct quasifields from fields. Many known methods to constructing loops can be seen as special cases of derivations. The examples given show the independence of various axioms.},
author = {Kiechle, Hubert},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {K-loop; Bol loop; Kikkawa loop; left power alternative loop; 2-divisible loop; derivation; K-loops; Bol loops; Kikkawa loops; left power alternative loops; 2-divisible loops; derivations},
language = {eng},
number = {2},
pages = {301-323},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Relatives of K-loops: Theory and examples},
url = {http://eudml.org/doc/248626},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Kiechle, Hubert
TI - Relatives of K-loops: Theory and examples
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 2
SP - 301
EP - 323
AB - A K-loop or Bruck loop is a Bol loop with the automorphic inverse property. An overview of the most important theorems on K-loops and some of their relatives, especially Kikkawa loops, is given. First, left power alternative loops are discussed, then Kikkawa loops are considered. In particular, their nuclei are determined. Then the attention is paid to general K-loops and some special classes of K-loops such as 2-divisible ones. To construct examples, the method of derivation is introduced. This has been used in the past to construct quasifields from fields. Many known methods to constructing loops can be seen as special cases of derivations. The examples given show the independence of various axioms.
LA - eng
KW - K-loop; Bol loop; Kikkawa loop; left power alternative loop; 2-divisible loop; derivation; K-loops; Bol loops; Kikkawa loops; left power alternative loops; 2-divisible loops; derivations
UR - http://eudml.org/doc/248626
ER -

References

top
  1. Albert A.A., Quasigroups I, Trans. Amer. Math. Soc. 54 (1943), 507-519. (1943) Zbl0063.00039MR0009962
  2. Artzy R., Relations between loop identities, Proc. Amer. Math. Soc. 11 (1960), 847-851. (1960) MR0117295
  3. Belousov V.D., Foundations of the Theory of Quasigroups and Loops, Izdat. Nauka, Moscow, 1967, (Russian). MR0218483
  4. Bol G., Gewebe und Gruppen, Math. An. 114 (1937), 414-431. (1937) Zbl0016.22603MR1513147
  5. Bruck R.H., A Survey of Binary Systems, 2 ed., Springer-Verlag, Berlin-Heidelberg-New York, 1966. Zbl0141.01401MR0093552
  6. Burn R.P., Bol quasi-fields and Pappus' theorem, Math. Z. 105 (1968), 351-364. (1968) Zbl0159.49803MR0230215
  7. Caggegi A., Nuovi quasicorpi di Bol, Matematiche (Catania) 35 (1980), 241-247. (1980) Zbl0525.51008MR0698746
  8. Choudhury A.C., Quasi-groups and nonassociative systems, I. Bull. Calcutta Math. Soc. 40 (1948), 183-194. (1948) MR0029385
  9. Fuchs L., Infinite Abelian Groups, Academic Press, New York-London, 1970. Zbl0338.20063MR0255673
  10. Funk M., Nagy P.T., On collineation groups generated by Bol reflections, J. Geom. 48 (1993), 63-78. (1993) Zbl0793.51001MR1242703
  11. Glauberman G., On loops of odd order, J. Algebra 1 (1964), 374-396. (1964) Zbl0123.01502MR0175991
  12. Goodaire E.G., Robinson D.A., Semi-direct products and Bol loop, Demonstratio Math. 27 (1994), 573-588. (1994) Zbl0831.20095MR1319403
  13. Karzel H., Unendliche Dicksonsche Fastkörper, Arch. Math. (Basel) 16 (1965), 247-256. (1965) Zbl0131.01701MR0183668
  14. Karzel H., Zusammnehänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und 2 -Strukturen mit Rechtecksaxiom, Abh. Math. Sem. Univ. Hamburg 32 (1968), 191-206. (1968) MR0240715
  15. Kiechle H., Lokal endliche Quasikörper, Ph.D. Thesis, Techn. Univ. München, 1990. Zbl0715.12007
  16. Kiechle H., Der Kern einer automorphen Ableitung und eine Anwendung auf normale Teilkörper verallgemeinerter André-Systeme, Arch. Math. (Basel) 58 (1992), 514-520. (1992) Zbl0725.12006MR1156585
  17. Kikkawa M., Geometry of homogeneous Lie loops, Hiroshima Math. J. 5 (1975), 141-179. (1975) Zbl0304.53037MR0383301
  18. Kikkawa M., On some quasigroups of algebraic models of symmetric spaces III, Mem. Fac. Sci. Shimane Univ. 9 (1975), 7-12. (1975) Zbl0322.20035MR0412316
  19. Kist G., Theorie der verallgemeinerten kinematischen Räume, Beiträge zur Geometrie und Algebra 14 (1986), TUM-M8611, Habilitationsschrift, Techn. Univ. München. Zbl0636.51012MR0924326
  20. Kreuzer A., Beispiele endlicher und unendlicher K-Loops, Resultate Math. 23 (1993), 355-362. (1993) Zbl0788.20036MR1215220
  21. Kreuzer A., Construction of finite loops of even order, Proc. of the Conference on Nearrings and Nearfields (Fredericton, NB, Canada, 18-24 July, 1993), Y. Fong & al., eds., Kluwer Acad. Press, 1995, pp.169-179. Zbl0838.20079MR1366476
  22. Kreuzer A., Inner mappings of Bol loops, Math. Proc. Cambridge Philos. Soc. 123 (1998), 53-57. (1998) MR1474864
  23. Kreuzer A., Wefelscheid H., On K-loops of finite order, Resultate Math. 25 (1994), 79-102. (1994) Zbl0803.20052MR1262088
  24. Lüneburg H., Translation Planes, Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR0572791
  25. Miheev P.O., Sabinin L.V., Quasigroups and differential geometry, Quasigroups and Loops: Theory and Applications (O. Chein, H.O. Pflugfelder & J.D.H. Smith, eds.), Heldermann Verlag, Berlin, 1990, pp.357-430. Zbl0721.53018MR1125818
  26. Pflugfelder H.O., Quasigroups and Loops: Introduction, Heldermann-Verlag, Berlin, 1990. Zbl0715.20043MR1125767
  27. Robinson D.A., Bol loops, Trans. Amer. Math. Soc. 123 (1966), 341-354. (1966) Zbl0163.02001MR0194545
  28. Robinson D.A., Bol quasigroups, Publ. Math. Debrecen 19 (1972), 151-153. (1972) MR0325829
  29. Sabinin L.V., Sabinina L.L., Sbitneva L.V., On the notion of gyrogroup, Aequationes Math. 56 (1998), 11-17. (1998) Zbl0923.20051MR1628291
  30. Sabinin L.V., Sbitneva L.V., Half Bol loops, Webs and Quasigroups, Tver Univ. Press, 1994, pp.50-54. Zbl0897.20044MR1413337
  31. Sharma B.L., Left loops which satisfy the left Bol identity, Proc. Amer. Math. Soc. 61 (1976), 189-195. (1976) MR0422480
  32. Timm J., Zur Konstruktion von Fastringen I, Abh. Math. Sem. Univ. Hamburg 35 (1970), 57-74. (1970) Zbl0217.06402MR0276283
  33. Ungar A.A., The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Resultate Math. 16 (1989), 168-179. (1989) Zbl0693.20067MR1020224
  34. Ungar A.A., Weakly associative groups, Resultate Math. 17 (1990), 149-168. (1990) Zbl0699.20055MR1039282
  35. Ungar A.A., The holomorphic automorphism group of the complex disk, Aequationes Math. 47 (1994), 240-254. (1994) Zbl0799.20032MR1268034
  36. Wähling H., Theorie der Fastkörper, Thales Verlag, Essen, 1987. MR0956467

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.