Cardinal invariants of the lattice of partitions

Barbara Majcher-Iwanow

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 3, page 543-558
  • ISSN: 0010-2628

Abstract

top
We study cardinal coefficients related to combinatorial properties of partitions of ω with respect to the order of almost containedness.

How to cite

top

Majcher-Iwanow, Barbara. "Cardinal invariants of the lattice of partitions." Commentationes Mathematicae Universitatis Carolinae 41.3 (2000): 543-558. <http://eudml.org/doc/248635>.

@article{Majcher2000,
abstract = {We study cardinal coefficients related to combinatorial properties of partitions of $\omega $ with respect to the order of almost containedness.},
author = {Majcher-Iwanow, Barbara},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {lattice of partitions; almost containedness; tower number; splitting number; reaping number; Cohen's forcing; lattice of partitions; almost containedness; tower number; splitting number; Cohen's forcing},
language = {eng},
number = {3},
pages = {543-558},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Cardinal invariants of the lattice of partitions},
url = {http://eudml.org/doc/248635},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Majcher-Iwanow, Barbara
TI - Cardinal invariants of the lattice of partitions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 3
SP - 543
EP - 558
AB - We study cardinal coefficients related to combinatorial properties of partitions of $\omega $ with respect to the order of almost containedness.
LA - eng
KW - lattice of partitions; almost containedness; tower number; splitting number; reaping number; Cohen's forcing; lattice of partitions; almost containedness; tower number; splitting number; Cohen's forcing
UR - http://eudml.org/doc/248635
ER -

References

top
  1. Carlson T.J., Simpson S.G., A dual form of Ramsey's theorem, Adv. Math. 53 (1984), 265-290. (1984) Zbl0564.05005MR0753869
  2. Cichoń J., Majcher B., Wȩglorz B., Dualizations of van Douwen Diagram, Acta Univ. Carolinae Math. et Phys. 33 (1992), 27-29. (1992) MR1287221
  3. Cichoń J., Krawczyk A., Majcher-Iwanow B., Wȩglorz B., HASH(0x91c83d0), Dualization of van Douwen Diagram, to appear in J. Symb. Logic. MR1771096
  4. van Dowen E.K., The Integers and Topology, Handbook of Set-Theoretic Topology (K. Kunen and J.E. Vaughan, eds) North-Holland, Amsterdam, 1984, pp.111-167. MR0776619
  5. Halbeisen L., On shattering, splitting and reaping partitions, Math. Logic Quarterly 44 (1998), 123-134. (1998) Zbl0896.03036MR1601919
  6. Kamburelis A., Wȩglorz B., Splittings, Arch. Math. Logic 35 (1996), 263-277. (1996) MR1390805
  7. Kunen K., Set Theory. An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980. Zbl0534.03026MR0597342
  8. Majcher B., Orthogonal partitions, Acta Univ. Carolinae Math. et Phys. 31 (1990), 59-63. (1990) Zbl0794.03064MR1101416
  9. Majcher-Iwanow B., Cardinal invariants of the lattice of partitions and some related lattices, PhD Thesis, Wrocław, 1997. 
  10. Matet P., Partitions and filters, J. Symb. Logic 51 (1986), 12-21. (1986) Zbl0588.04011MR0830067
  11. Spinas O., Partition numbers, Ann. Pure and Appl. Logic 90 (1997), 243-262. (1997) Zbl0891.03019MR1489310
  12. Shelah S., Proper Forcing, Springer-Verlag, NY, 1982. Zbl0819.03042MR0675955
  13. Vaughan J., Small Uncountable Cardinals and Topology, Open Problems in Topology (J. van Mill and G. Reed, eds), North-Holland, Amsterdam, 1990, pp.195-218. MR1078647

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.